diff --git a/navipy/maths/new_euler.py b/navipy/maths/new_euler.py
index b5a7fc998f229e64ce883cc52af4382223c0987d..0971cc80cc91e1476d343737335fb3b67ad52ac7 100644
--- a/navipy/maths/new_euler.py
+++ b/navipy/maths/new_euler.py
@@ -45,7 +45,7 @@ def R3(a):
 
 def rotation_matrix(ai, aj, ak, axes='rxyz'):
     if axes not in list(_AXES2TUPLE.keys()):
-        raise Exception("the chosen convention is not supported")
+        raise ValueError("the chosen convention is not supported")
     r, i, j, k = _AXES2TUPLE[axes]
     matrixes = [R1, R2, R3]
     Rijk = np.dot(matrixes[i](ai),
@@ -57,7 +57,7 @@ def rotation_matrix(ai, aj, ak, axes='rxyz'):
         return np.transpose(Rijk)
 
 
-def from_matrix_new(matrix, axes='sxyz'):
+def from_matrix(matrix, axes='sxyz'):
     """Return Euler angles from rotation matrix for specified axis sequence.
 
     axes : One of 24 axis sequences as string or encoded tuple
@@ -67,7 +67,7 @@ def from_matrix_new(matrix, axes='sxyz'):
     if not isinstance(matrix, np.ndarray) and not isinstance(matrix, list):
         raise TypeError("matrix must be np.array or list")
     if axes not in list(_AXES2TUPLE.keys()):
-        raise Exception("the chosen convention is not supported")
+        raise ValueError("the chosen convention is not supported")
     # if np.any(np.isnan(np.array(matrix, dtype=np.float64))):
     #    raise ValueError('posorient must not contain nan')
     if not is_numeric_array(matrix):
@@ -143,11 +143,11 @@ def from_quaternion(quaternion, axes='sxyz'):
     # if np.any(np.isnan(np.array(quaternion, dtype=np.float64))):
     #    raise ValueError('posorient must not contain nan')
     if axes not in list(_AXES2TUPLE.keys()):
-        raise Exception("the chosen convention is not supported")
-    return from_matrix_new(quat.matrix(quaternion), axes)
+        raise ValueError("the chosen convention is not supported")
+    return from_matrix(quat.matrix(quaternion), axes)
 
 
-def angular_rate_matrix(ai, aj, ak, axes='rxyz'):
+def angle_rate_matrix(ai, aj, ak, axes='rxyz'):
     """
     Return the Euler Angle Rates Matrix
 
@@ -165,7 +165,7 @@ def angular_rate_matrix(ai, aj, ak, axes='rxyz'):
     #   np.isnan(np.array([ak], dtype=np.float64)):
     #    raise ValueError("quaternions must not be nan or none")
     if axes not in list(_AXES2TUPLE.keys()):
-        raise Exception("the chosen convention is not supported")
+        raise ValueError("the chosen convention is not supported")
     s, i, j, k = _AXES2TUPLE[axes]
     ei = np.zeros(3)
     ej = np.zeros(3)
@@ -216,7 +216,7 @@ def angular_velocity(ai, aj, ak, dai, daj, dak, axes='rxyz'):
     #   np.isnan(np.array([dak], dtype=np.float64)):
     #    raise ValueError("quaternions must not be nan or none")
     if axes not in list(_AXES2TUPLE.keys()):
-        raise Exception("the chosen convention is not supported")
-    rotM = angular_rate_matrix(ai, aj, ak, axes)
+        raise ValueError("the chosen convention is not supported")
+    rotM = angle_rate_matrix(ai, aj, ak, axes)
     vel = np.dot(rotM, [dai, daj, dak])
     return vel
diff --git a/navipy/maths/test_euler.py b/navipy/maths/test_euler.py
index f690de1e95f4159da5e1eeb8619c29ed8d7e298e..a6bd46814d4c46e315df48435fef2500de372d02 100644
--- a/navipy/maths/test_euler.py
+++ b/navipy/maths/test_euler.py
@@ -4,11 +4,11 @@ import navipy.maths.new_euler as new_euler
 # import navipy.maths.constants as constants
 import unittest
 # from navipy.maths.euler import matrix
-from navipy.maths.new_euler import angular_rate_matrix
+from navipy.maths.new_euler import angle_rate_matrix
 from navipy.maths.new_euler import angular_velocity
 from navipy.maths.new_euler import rotation_matrix
 from navipy.maths.new_euler import R1, R2, R3
-# from navipy.maths.euler import angle_rate_matrix as old_angular_rate_matrix
+# from navipy.maths.euler import angle_rate_matrix as old_angle_rate_matrix
 # from navipy.maths.euler import angular_velocity as old_angular_velocity
 # from navipy.maths.euler import matrix as old_rotation_matrix
 
@@ -146,7 +146,7 @@ class TestEuler(unittest.TestCase):
             # print("key", key)
             rotation_0 = new_euler.rotation_matrix(1, 2, 3, key)
             # print("roation_0", rotation_0)
-            [ai, aj, ak] = new_euler.from_matrix_new(rotation_0, key)
+            [ai, aj, ak] = new_euler.from_matrix(rotation_0, key)
             # print("res", ai, aj, ak)
             rotation_1 = new_euler.rotation_matrix(ai, aj, ak, key)
             condition[key] = np.allclose(rotation_0,
@@ -261,7 +261,7 @@ class TestEuler(unittest.TestCase):
             print("between key", key)
             rotation_0 = new_euler.rotation_matrix(1, 2, 3, refkey)
             print("betewwen matrix", rotation_0)
-            [ai, aj, ak] = new_euler.from_matrix_new(rotation_0, key)
+            [ai, aj, ak] = new_euler.from_matrix(rotation_0, key)
             print("between", ai, aj, ak)
             rotation_1 = new_euler.rotation_matrix(ai, aj, ak, key)
             condition[key] = np.allclose(rotation_0,
@@ -275,8 +275,8 @@ class TestEuler(unittest.TestCase):
         self.assertTrue(np.allclose(angles, [0.123, 0, 0]))
 
     def test_from_quaternion_params(self):
-        for a, b, c, d in [(None, 2, 6, 8), (9.0, 'w', 2, 3),
-                           (5.0, 4.0, None, 8.0),
+        for a, b, c, d in [(None, 2, 6, 'rxyz'), (9.0, 'w', 2, 'rxyz'),
+                           (5.0, 4.0, None, 'rxyz'),
                            (1.0, 2.0, 3.0, 'w')]:
             with self.assertRaises(ValueError):
                 new_euler.from_quaternion([a, b, c, d])
@@ -311,9 +311,9 @@ class TestEuler(unittest.TestCase):
             with self.assertRaises(TypeError):
                 new_euler.angle_rate_matrix(a, b, c, d)
 
-        for a, b, c, d in [(9.0, np.nan, 2, 3)]:
-            with self.assertRaises(ValueError):
-                new_euler.angle_rate_matrix(a, b, c, d)
+        # for a, b, c, d in [(9.0, np.nan, 2, 'rxyz')]:
+        #    with self.assertRaises(ValueError):
+        #        new_euler.angle_rate_matrix(a, b, c, d)
 
         with self.assertRaises(Exception):
             new_euler.angle_rate_matrix(9.0, 8.0, 7.0, 'w')
@@ -437,8 +437,8 @@ class TestEuler(unittest.TestCase):
         # dak = 0
         Rijk_r = rotation_matrix(ai, aj, ak, 'rxyz')
         Rijk = rotation_matrix(ai, aj, ak, 'sxyz')
-        E_p = angular_rate_matrix(ai, aj, ak, 'rxyz')
-        E = angular_rate_matrix(ai, aj, ak, 'sxyz')
+        E_p = angle_rate_matrix(ai, aj, ak, 'rxyz')
+        E = angle_rate_matrix(ai, aj, ak, 'sxyz')
         E_inv = np.linalg.inv(E)
         newR = np.dot(E_p, E_inv)
         self.assertTrue(np.allclose(Rijk, newR))
@@ -456,8 +456,8 @@ class TestEuler(unittest.TestCase):
         # dai = 0
         # daj = 0
         # dak = 1
-        E_p = angular_rate_matrix(ai, aj, ak, 'rzxz')
-        E = angular_rate_matrix(ai, aj, ak, 'szxz')
+        E_p = angle_rate_matrix(ai, aj, ak, 'rzxz')
+        E = angle_rate_matrix(ai, aj, ak, 'szxz')
         testE = [[np.sin(aj)*np.sin(ak), np.cos(ak), 0],
                  [-np.sin(aj)*np.cos(ak), np.sin(ak), 0],
                  [np.cos(aj), 0, 1]]
@@ -482,8 +482,8 @@ class TestEuler(unittest.TestCase):
         E_p = [[0, np.cos(ai), np.sin(aj)*np.sin(ai)],
                [0, -np.sin(ai), np.sin(aj)*np.cos(ai)],
                [1, 0, np.cos(aj)]]
-        E_fkt = angular_rate_matrix(ai, aj, ak, 'szxz')
-        E_p_fkt = angular_rate_matrix(ai, aj, ak, 'rzxz')
+        E_fkt = angle_rate_matrix(ai, aj, ak, 'szxz')
+        E_p_fkt = angle_rate_matrix(ai, aj, ak, 'rzxz')
         self.assertTrue(np.allclose(E, E_fkt))
         self.assertTrue(np.allclose(E_p, E_p_fkt))
         w = np.dot(E, [dai, daj, dak])
@@ -541,7 +541,7 @@ class TestEuler(unittest.TestCase):
         self.assertTrue(np.allclose([100, 0, 0], vel_p, 0.1))
     """
 
-    def test_angular_rate(self):
+    def test_angle_rate(self):
         ea = 0.1
         eb = 0.15
         ec = 0.7
@@ -558,7 +558,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MR3, np.dot(MR2, e1))
         p2 = np.dot(MR3, e2)
         rotM = np.column_stack([p1, p2, e3])
-        M = angular_rate_matrix(ea, eb, ec, 'sxyz')
+        M = angle_rate_matrix(ea, eb, ec, 'sxyz')
         self.assertTrue(np.all(rotM == M))
 
         # ryzx
@@ -570,7 +570,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e1])
-        M = angular_rate_matrix(ea, eb, ec, 'syzx')
+        M = angle_rate_matrix(ea, eb, ec, 'syzx')
         self.assertTrue(np.allclose(rotM, M))
 
         # ryxz
@@ -582,7 +582,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e1)
         rotM = np.column_stack([p1, p2, e3])
-        M = angular_rate_matrix(ea, eb, ec, 'syxz')
+        M = angle_rate_matrix(ea, eb, ec, 'syxz')
         self.assertTrue(np.allclose(rotM, M))
 
         # rxzy
@@ -594,7 +594,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e1))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e2])
-        M = angular_rate_matrix(ea, eb, ec, 'sxzy')
+        M = angle_rate_matrix(ea, eb, ec, 'sxzy')
         self.assertTrue(np.allclose(rotM, M))
 
         # rzxy
@@ -606,7 +606,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e3))
         p2 = np.dot(MRk, e1)
         rotM = np.column_stack([p1, p2, e2])
-        M = angular_rate_matrix(ea, eb, ec, 'szxy')
+        M = angle_rate_matrix(ea, eb, ec, 'szxy')
         self.assertTrue(np.allclose(rotM, M))
 
         # rxzx
@@ -618,7 +618,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e1))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e1])
-        M = angular_rate_matrix(ea, eb, ec, 'sxzx')
+        M = angle_rate_matrix(ea, eb, ec, 'sxzx')
         self.assertTrue(np.allclose(rotM, M))
 
         # rzxz
@@ -639,8 +639,8 @@ class TestEuler(unittest.TestCase):
         #           -s(ea)*s(ec)+c(ea)*c(eb)*c(ec),
         #           c(ea)*s(eb)],
         #          [s(eb)*s(ec), -s(eb)*c(ec), c(eb)]]
-        # mfunc = angular_rate_matrix(ea, eb, ec, 'szxz')
-        M = angular_rate_matrix(ea, eb, ec, 'szxz')
+        # mfunc = angle_rate_matrix(ea, eb, ec, 'szxz')
+        M = angle_rate_matrix(ea, eb, ec, 'szxz')
         self.assertTrue(np.allclose(rotM, M))
 
         # rxyx
@@ -652,7 +652,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e1))
         p2 = np.dot(MRk, e2)
         rotM = np.column_stack([p1, p2, e1])
-        M = angular_rate_matrix(ea, eb, ec, 'sxyx')
+        M = angle_rate_matrix(ea, eb, ec, 'sxyx')
         self.assertTrue(np.allclose(rotM, M))
 
         # ryxy
@@ -664,7 +664,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e1)
         rotM = np.column_stack([p1, p2, e2])
-        M = angular_rate_matrix(ea, eb, ec, 'syxy')
+        M = angle_rate_matrix(ea, eb, ec, 'syxy')
         self.assertTrue(np.allclose(rotM, M))
 
         # ryzy
@@ -676,7 +676,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e2])
-        M = angular_rate_matrix(ea, eb, ec, 'syzy')
+        M = angle_rate_matrix(ea, eb, ec, 'syzy')
         self.assertTrue(np.allclose(rotM, M))
 
         # rzyz
@@ -688,7 +688,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e3))
         p2 = np.dot(MRk, e2)
         rotM = np.column_stack([p1, p2, e3])
-        M = angular_rate_matrix(ea, eb, ec, 'szyz')
+        M = angle_rate_matrix(ea, eb, ec, 'szyz')
         self.assertTrue(np.allclose(rotM, M))