diff --git a/doc/source/gettingstarted.rst b/doc/source/gettingstarted.rst index f2f18523a73c91285561c4ade8aa671d0fbdd395..d5b726f54ddb58bcbc1f52eaf368963d0ee2906b 100644 --- a/doc/source/gettingstarted.rst +++ b/doc/source/gettingstarted.rst @@ -21,8 +21,9 @@ Testing navipy Testing blender --------------- -Navipy comes with a command line tool to run your script under blender.\ - It is however required that the python version used by blender, and the one use by navipy matche. To test your installation of blender and navipy you can download the (:download:`script <../../navipy/sensors/blendnavipy_test.py>`) and run it under blender with the following command: + +Navipy comes with a command line tool to run your script under blender. \ +It is however required that the python version used by blender, and the one use by navipy matche. To test your installation of blender and navipy you can download the (:download:`script <../../navipy/sensors/blendnavipy_test.py>`) and run it under blender with the following command: .. code-block:: bash diff --git a/doc/source/overview/examples/blenddemo_beesampling.py b/doc/source/overview/examples/blenddemo_beesampling.py deleted file mode 100644 index a948ef8a824fdc6ef48d4644096a9fe3174d43f3..0000000000000000000000000000000000000000 --- a/doc/source/overview/examples/blenddemo_beesampling.py +++ /dev/null @@ -1,32 +0,0 @@ -""" -Example on how to use the rendering module -""" -import tempfile -import numpy as np -import os -from navipy.sensors.bee_sampling import BeeSampling -from navipy.sensors.renderer import BlenderRender - -# create a bee sampling -cyberbee = BlenderRender() -cyberbee.cycle_samples = 5 -bee_samp = BeeSampling(cyberbee) -# Create a list of point from which we want to render images -# Careful three d meshing grow quickly. -x = np.linspace(-5, 5, 3) -y = np.linspace(-5, 5, 3) -z = np.linspace(1.8, 1.8, 1) -alpha_1 = np.array([0]) + np.pi / 2 -alpha_2 = np.array([0]) -alpha_3 = np.array([0]) -bee_samp.create_sampling_grid( - x, y, z, alpha1=alpha_1, alpha2=alpha_2, alpha3=alpha_3) -# Assign maximum world dimension. Otherwise the distance -# will go to infinity, and the distance to objects after compression -# will be set to 0 -world_dim = 50 * np.sqrt(2) -bee_samp.world_dim = world_dim -# Rendering in a temporary folder. -with tempfile.TemporaryDirectory() as folder: - filename_db = os.path.join(folder, 'database.db') - bee_samp.render(filename_db) diff --git a/doc/source/overview/rendering.rst b/doc/source/overview/rendering.rst index 91efae6ee535cc6c10df22f93f672d4777c26da9..2a2979b7372262789d01aeeecf119f8ada91908e 100644 --- a/doc/source/overview/rendering.rst +++ b/doc/source/overview/rendering.rst @@ -17,59 +17,6 @@ Using navipy in blender >>> blendnavipy --blender-world='/path/to/world.blend' --python-script='/path/to/script.py' .. argparse:: - :filename: ../bin/blendnavipy.py + :filename: ../navipy/sensors/blendnavipy.py :func: parser_blendnavipy :prog: blendnavipy - -How to generate a database using blender ----------------------------------------- -.. literalinclude:: examples/blenddemo_beesampling.py - :lines: 7, 8 - -First we configure the rendering module - -.. literalinclude:: examples/blenddemo_beesampling.py - :lines: 11, 12 - -With the toolbox at disposition we just need to configure the \ -BeeSampling to render images on a regular 3D grid. - -.. literalinclude:: examples/blenddemo_beesampling.py - :lines: 13,16-23 - -If we want to use the distance to objects, we need to tell the \ -BeeSampling what is the maximum distance to objects in the environment.\ - Otherwise the distance can go until infinity, and since the image are \ -compressed in the database, all distances to object will be equal to \ -zero: - -.. literalinclude:: examples/blenddemo_beesampling.py - :lines: 27-28 - -Finally we can generate the database. - -.. literalinclude:: examples/blenddemo_beesampling.py - :dedent: 4 - :lines: 31-32 - - -(:download:`Source code <examples/blenddemo_beesampling.py>`) - -Custom sampling ---------------- -.. literalinclude:: examples/blenddemo_cyberbee.py - :lines: 5 - -With the toolbox at disposition we just need to configure the \ -Cyberbee to render images at desired positions. - -.. literalinclude:: examples/blenddemo_cyberbee.py - :lines: 8-13 - -To render a scene at a given positions, we assign position orientation \ -to and then tell the cyberbee to get the scene at that point. - -.. literalinclude:: examples/blenddemo_cyberbee.py - :lines: 16-24 - -(:download:`Source code <examples/blenddemo_cyberbee.py>`) diff --git a/doc/source/tutorials/examples/blenddemo_beesampling.py b/doc/source/tutorials/examples/blenddemo_beesampling.py new file mode 100644 index 0000000000000000000000000000000000000000..e0a6e1d77703ca6128aa2427efea364279ea5df3 --- /dev/null +++ b/doc/source/tutorials/examples/blenddemo_beesampling.py @@ -0,0 +1,93 @@ +""" +Example on how to use the rendering module +""" +import tempfile +import numpy as np +import os +import matplotlib.pyplot as plt +from matplotlib.patches import ConnectionPatch +from navipy.database import DataBaseLoad +from navipy.sensors.bee_sampling import BeeSampling +from navipy.sensors.renderer import BlenderRender + + +# create a bee sampling +cyberbee = BlenderRender() +cyberbee.cycle_samples = 100 # higher value -> slower but nicer +bee_samp = BeeSampling(cyberbee) +# Create a list of point from which we want to render images +# Careful three d meshing grow quickly. +x = np.linspace(-5, 5, 3) +y = np.linspace(-5, 5, 3) +z = np.linspace(1.8, 1.8, 1) +alpha_1 = np.array([0]) + np.pi / 2 +alpha_2 = np.array([0]) +alpha_3 = np.array([0]) +bee_samp.create_sampling_grid( + x, y, z, alpha1=alpha_1, alpha2=alpha_2, alpha3=alpha_3) +# Assign maximum world dimension. Otherwise the distance +# will go to infinity, and the distance to objects after compression +# will be set to 0 +world_dim = 50 * np.sqrt(2) +bee_samp.world_dim = world_dim +# Rendering in a temporary folder. +filename_db = 'database.db' +bee_samp.render(filename_db) + +# --- End of database generation. +# --- Plot some point of the db +# Load and plot db +mydb = DataBaseLoad(filename_db) + +# Plot a view of db +posorients = mydb.posorients +posorient = posorients.loc[1,:] +f, axarr = plt.subplots(3,3,figsize=(15,10)) +ax=axarr[1][1] +ax.plot(posorients.x,posorients.y,'ko') +ax.set_xlabel('x') +ax.set_ylabel('y') +ax.set_aspect('equal') +ax.text(0,2.5,'Top view of the grid',horizontalalignment='center',fontsize=15) +unique_x = posorients.x.unique()[::-1] +unique_y = posorients.y.unique() +for i,axar in enumerate(axarr): + for j, ax in enumerate(axar): + if j==1 and i==1: + continue + posorient.x=unique_x[j] + posorient.y=unique_y[i] + scene = mydb.scene(posorient) + to_plot_im = scene[:, :, :3,0] + ax.imshow(to_plot_im) + ax.invert_yaxis() + ax.set_aspect('equal') + ax.get_xaxis().set_ticks([]) + ax.get_yaxis().set_ticks([]) + ax.set_title('Panorama at ({},{})'.format(posorient.x,posorient.y)) + xyA=[0,0] + if j==0: + xyA[0]=to_plot_im.shape[1] + elif j==1: + xyA[0]=to_plot_im.shape[1]//3 + elif j==2: + xyA[0]=0 + print(i,j,posorient.x,posorient.y) + if i==0: + xyA[1]=0 + elif i==1: + xyA[1]=to_plot_im.shape[0]//3 + elif i==2: + xyA[1]=to_plot_im.shape[0] + + con = ConnectionPatch(xyA=xyA, xyB=(posorient.x,posorient.y), coordsA="data", coordsB="data", + axesA=ax, axesB=axarr[1][1], color="black") + ax.add_artist(con) + +for i,axar in enumerate(axarr): + axar[0].set_ylabel('Elevation') +for i,axar in enumerate(axarr.transpose()): + axar[-1].set_xlabel('Azimuth') + +f.show() +f.savefig('database.svg') diff --git a/doc/source/overview/examples/blenddemo_cyberbee.py b/doc/source/tutorials/examples/blenddemo_cyberbee.py similarity index 73% rename from doc/source/overview/examples/blenddemo_cyberbee.py rename to doc/source/tutorials/examples/blenddemo_cyberbee.py index e9e1b2c9ff21d86c2a6bcdf850a2685c08e2aa89..d689323d1bd0770871bed7e160dbf3b99d7ba63d 100644 --- a/doc/source/overview/examples/blenddemo_cyberbee.py +++ b/doc/source/tutorials/examples/blenddemo_cyberbee.py @@ -1,12 +1,11 @@ import numpy as np import pandas as pd -from matplotlib.colors import hsv_to_rgb, rgb_to_hsv import matplotlib.pyplot as plt from navipy.sensors.renderer import BlenderRender # Configure the rendering module cyberbee = BlenderRender() -cyberbee.cycle_samples = 50 +cyberbee.cycle_samples = 100 cyberbee.camera_rotation_mode = 'XYZ' cyberbee.camera_fov = [[-90, 90], [-180, 180]] cyberbee.gaussian_width = 1.5 @@ -26,17 +25,8 @@ scene = cyberbee.scene(posorient) # plot f, axarr = plt.subplots(2, 1, sharex=True) -to_plot_im = scene[:, :, :3] -to_plot_im -= to_plot_im.min() -to_plot_im /= to_plot_im.max() -to_plot_im = rgb_to_hsv(to_plot_im) -to_plot_im[..., 2] = to_plot_im[..., 2] * 2 -to_plot_im = hsv_to_rgb(to_plot_im) - -to_plot_im = to_plot_im * 255 -to_plot_im = to_plot_im.astype(np.uint8) - -to_plot_dist = 1 / scene[:, :, 3] +to_plot_im = scene[:, :, :3,0] +to_plot_dist = 1 / scene[:, :, 3,0] ax = axarr[0] ax.imshow(to_plot_im) @@ -61,7 +51,6 @@ f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.85, 0.15, 0.03, 0.3]) cb = f.colorbar(im, cax=cbar_ax) cb.set_label('Nearness') -cb.set_label('Nearness') f.show() -f.savefig('CyberBeeView.svg') +f.savefig('renderimage.svg') diff --git a/doc/source/tutorials/index.rst b/doc/source/tutorials/index.rst index 2d4fe5e412fdc517e18cda9c73d8644cf4393ef9..5bd7cf63d3f4ddad18aeda8e50273b2e6568a483 100644 --- a/doc/source/tutorials/index.rst +++ b/doc/source/tutorials/index.rst @@ -1,6 +1,69 @@ Tutorials ========= +.. The image ratio is: width: 350px; height: 350/4 + (2x5) ~= 98px + +.. only:: builder_html and (not singlehtml) + + .. container:: tocdescr + + + .. container:: descr + + .. figure:: /tutorials/compound_eye.jpeg + :target: interface/index.html + + :doc:`/interface/index` + Average skyline vector homing (grid) + + .. container:: descr + + .. figure:: /tutorials/compound_eye.jpeg + :target: interface/index.html + + :doc:`/interface/index` + Following the rotational image difference (close loop) + + .. container:: descr + + .. figure:: /tutorials/compound_eye.jpeg + :target: interface/index.html + + :doc:`/interface/index` + Photo-taxis with a compound eye (close loop) + + .. container:: descr + + .. figure:: /tutorials/compound_eye.jpeg + :target: interface/index.html + + :doc:`/interface/index` + Finding attracting points (graph) + + .. container:: descr + + .. figure:: /tutorials/database.jpeg + :target: database.html + + :doc:`/tutorials/database` + Creating a database for offline methods + + .. container:: descr + + .. figure:: /tutorials/renderimage.svg + :target: renderimage.html + + :doc:`/tutorials/renderimage` + Generating images and movies from insect trajectory + +.. only:: latex or epub or singlehtml + + .. toctree:: + :maxdepth: 1 + + database.rst + renderimage.rst + Average place-code vector homing -------------------------------- Homing with an average skyline vector consist of deriving the skyline \ diff --git a/doc/source/tutorials/renderimage.rst b/doc/source/tutorials/renderimage.rst new file mode 100644 index 0000000000000000000000000000000000000000..7688636e6cb2ff0ae9c3cd9b552d5c077ebc0e21 --- /dev/null +++ b/doc/source/tutorials/renderimage.rst @@ -0,0 +1,25 @@ +Render a single image +--------------------- +.. literalinclude:: examples/blenddemo_cyberbee.py + :lines: 5 + +With the toolbox at disposition we just need to configure the \ +Cyberbee to render images at desired positions. + +.. literalinclude:: examples/blenddemo_cyberbee.py + :lines: 8-13 + +To render a scene at a given positions, we assign position orientation \ +to and then tell the cyberbee to get the scene at that point. + +.. literalinclude:: examples/blenddemo_cyberbee.py + :lines: 16-24 + +(:download:`Source code <examples/blenddemo_cyberbee.py>`) +(:download:`Blender world <../../../navipy/resources/forest_world.blend>`) + + + +Create a movie +-------------- + diff --git a/navipy/resources/forest_world.blend b/navipy/resources/forest_world.blend index f91b08161a81a8a3312113f73b12c094587bf631..326c649d78b9bdd506ea001b6ef888db2a3c38ad 100644 Binary files a/navipy/resources/forest_world.blend and b/navipy/resources/forest_world.blend differ