From bd1831039cc194de1dc5149d0cf02c86a185f8e7 Mon Sep 17 00:00:00 2001
From: "Olivier J.N. Bertrand" <olivier.bertrand@uni-bielefeld.de>
Date: Tue, 18 Sep 2018 06:10:41 +0200
Subject: [PATCH] Rename convention

---
 navipy/maths/constants.py                     |  8 ++--
 navipy/maths/euler.py                         | 34 +++++++-------
 navipy/maths/homogeneous_transformations.py   |  4 +-
 navipy/maths/quaternion.py                    |  4 +-
 navipy/maths/test_euler.py                    | 46 +++++++++----------
 .../maths/test_homogeneous_transformations.py |  6 +--
 navipy/maths/test_quaternion.py               |  2 +-
 navipy/processing/test_OpticFlow.py           |  4 +-
 navipy/trajectories/test_markers.py           |  4 +-
 navipy/trajectories/test_trajectory.py        |  6 +--
 navipy/trajectories/transformations.py        | 12 ++---
 11 files changed, 65 insertions(+), 65 deletions(-)

diff --git a/navipy/maths/constants.py b/navipy/maths/constants.py
index 6259986..57d5bad 100644
--- a/navipy/maths/constants.py
+++ b/navipy/maths/constants.py
@@ -10,7 +10,7 @@ _NEXT_AXIS = [1, 2, 0, 1]
 
 # map axes strings to/from tuples of inner axis, parity, repetition, frame
 _AXES2TUPLE = {
-    'sxyz': (0, 0, 1, 2), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 0, 2, 1),
-    'sxzx': (0, 0, 2, 0), 'syzx': (0, 1, 2, 0), 'syzy': (0, 1, 2, 1),
-    'syxz': (0, 1, 0, 2), 'syxy': (0, 1, 0, 1), 'szxy': (0, 2, 0, 1),
-    'szxz': (0, 2, 0, 2), 'szyx': (0, 2, 1, 0), 'szyz': (0, 2, 1, 2)}
+    'xyz': (0, 0, 1, 2), 'xyx': (0, 0, 1, 0), 'xzy': (0, 0, 2, 1),
+    'xzx': (0, 0, 2, 0), 'yzx': (0, 1, 2, 0), 'yzy': (0, 1, 2, 1),
+    'yxz': (0, 1, 0, 2), 'yxy': (0, 1, 0, 1), 'zxy': (0, 2, 0, 1),
+    'zxz': (0, 2, 0, 2), 'zyx': (0, 2, 1, 0), 'zyz': (0, 2, 1, 2)}
diff --git a/navipy/maths/euler.py b/navipy/maths/euler.py
index 01e5a22..28adefa 100644
--- a/navipy/maths/euler.py
+++ b/navipy/maths/euler.py
@@ -65,7 +65,7 @@ def R3(a):
     return R3
 
 
-def matrix(ai, aj, ak, axes='sxyz'):
+def matrix(ai, aj, ak, axes='xyz'):
     """ rotation matrix around the three axis with the
         order given by the axes parameter
 
@@ -92,7 +92,7 @@ def matrix(ai, aj, ak, axes='sxyz'):
     return Rijk
 
 
-def from_matrix(matrix, axes='sxyz'):
+def from_matrix(matrix, axes='xyz'):
     """Return Euler angles from rotation matrix for specified axis sequence.
 
     axes : One of 24 axis sequences as string or encoded tuple
@@ -121,51 +121,51 @@ def from_matrix(matrix, axes='sxyz'):
     #    new = list(axes)
     #    new[0] = 's'
     #    axes = ''.join(new)
-    if axes == 'sxyx':
+    if axes == 'xyx':
         u = [np.arctan2(matrix[1, 0], matrix[2, 0]),
              np.arccos(matrix[0, 0]),
              np.arctan2(matrix[0, 1], -matrix[0, 2])]
-    elif axes == 'sxyz':
+    elif axes == 'xyz':
         u = [np.arctan2(matrix[1, 2], matrix[2, 2]),
              -np.arcsin(matrix[0, 2]),
              np.arctan2(matrix[0, 1], matrix[0, 0])]
-    elif axes == 'sxzx':
+    elif axes == 'xzx':
         u = [np.arctan2(matrix[2, 0], -matrix[1, 0]),
              np.arccos(matrix[0, 0]),
              np.arctan2(matrix[0, 2], matrix[0, 1])]
-    elif axes == 'sxzy':
+    elif axes == 'xzy':
         u = [np.arctan2(-matrix[2, 1], matrix[1, 1]),
              np.arcsin(matrix[0, 1]),
              np.arctan2(-matrix[0, 2], matrix[0, 0])]
-    elif axes == 'syxy':
+    elif axes == 'yxy':
         u = [np.arctan2(matrix[0, 1], -matrix[2, 1]),
              np.arccos(matrix[1, 1]),
              np.arctan2(matrix[1, 0], matrix[1, 2])]
-    elif axes == 'syxz':
+    elif axes == 'yxz':
         u = [np.arctan2(-matrix[0, 2], matrix[2, 2]),
              np.arcsin(matrix[1, 2]),
              np.arctan2(-matrix[1, 0], matrix[1, 1])]
-    elif axes == 'syzx':
+    elif axes == 'yzx':
         u = [np.arctan2(matrix[2, 0], matrix[0, 0]),
              -np.arcsin(matrix[1, 0]),
              np.arctan2(matrix[1, 2], matrix[1, 1])]
-    elif axes == 'syzy':
+    elif axes == 'yzy':
         u = [np.arctan2(matrix[2, 1], matrix[0, 1]),
              np.arccos(matrix[1, 1]),
              np.arctan2(matrix[1, 2], -matrix[1, 0])]
-    elif axes == 'szxy':
+    elif axes == 'zxy':
         u = [np.arctan2(matrix[0, 1], matrix[1, 1]),
              -np.arcsin(matrix[2, 1]),
              np.arctan2(matrix[2, 0], matrix[2, 2])]
-    elif axes == 'szxz':
+    elif axes == 'zxz':
         u = [np.arctan2(matrix[0, 2], matrix[1, 2]),
              np.arccos(matrix[2, 2]),
              np.arctan2(matrix[2, 0], -matrix[2, 1])]
-    elif axes == 'szyx':
+    elif axes == 'zyx':
         u = [np.arctan2(-matrix[1, 0], matrix[0, 0]),
              np.arcsin(matrix[2, 0]),
              np.arctan2(-matrix[2, 1], matrix[2, 2])]
-    elif axes == 'szyz':
+    elif axes == 'zyz':
         u = [np.arctan2(matrix[1, 2], -matrix[0, 2]),
              np.arccos(matrix[2, 2]),
              np.arctan2(matrix[2, 1], matrix[2, 0])]
@@ -176,7 +176,7 @@ def from_matrix(matrix, axes='sxyz'):
     return u
 
 
-def from_quaternion(quaternion, axes='sxyz'):
+def from_quaternion(quaternion, axes='xyz'):
     """Return Euler angles from quaternion for specified axis sequence.
     """
     if not isinstance(quaternion, np.ndarray) and\
@@ -189,7 +189,7 @@ def from_quaternion(quaternion, axes='sxyz'):
     return from_matrix(quat.matrix(quaternion)[:3, :3], axes)
 
 
-def angle_rate_matrix(ai, aj, ak, axes='sxyz'):
+def angle_rate_matrix(ai, aj, ak, axes='xyz'):
     """
     Return the Euler Angle Rates Matrix
 
@@ -248,7 +248,7 @@ def angle_rate_matrix(ai, aj, ak, axes='sxyz'):
     return rotM
 
 
-def angular_velocity(ai, aj, ak, dai, daj, dak, axes='sxyz'):
+def angular_velocity(ai, aj, ak, dai, daj, dak, axes='xyz'):
     """
     Return the angular velocity
 
diff --git a/navipy/maths/homogeneous_transformations.py b/navipy/maths/homogeneous_transformations.py
index 2ea6ee2..e815c53 100644
--- a/navipy/maths/homogeneous_transformations.py
+++ b/navipy/maths/homogeneous_transformations.py
@@ -313,7 +313,7 @@ def shear_from_matrix(matrix):
     return angle, direction, point, normal
 
 
-def decompose_matrix(matrix, axes='sxyz'):
+def decompose_matrix(matrix, axes='xyz'):
     """Return sequence oftransformations from transformation matrix.
 
     matrix : array_like
@@ -376,7 +376,7 @@ def decompose_matrix(matrix, axes='sxyz'):
 
 
 def compose_matrix(scale=None, shear=None, angles=None, translate=None,
-                   perspective=None, axes='sxyz'):
+                   perspective=None, axes='xyz'):
     """Return transformation matrix from sequence oftransformations.
 
     This is the inverse of the decompose_matrix function.
diff --git a/navipy/maths/quaternion.py b/navipy/maths/quaternion.py
index f116a27..ef0d018 100644
--- a/navipy/maths/quaternion.py
+++ b/navipy/maths/quaternion.py
@@ -27,7 +27,7 @@ def qat(a, n):
     return tmp
 
 
-def from_euler(ai, aj, ak, axes='sxyz'):
+def from_euler(ai, aj, ak, axes='xyz'):
     """Return quaternion from Euler angles and axis sequence.
     ai, aj, ak : Euler's roll, pitch and yaw angles
     axes : One of 24 axis sequences as string or encoded tuple
@@ -67,7 +67,7 @@ def about_axis(angle, axis):
     return q
 
 
-def matrix(quaternion, axes='sxyz'):
+def matrix(quaternion, axes='xyz'):
     """Return homogeneous rotation matrix from quaternion.
     :param quaternion : vector with at least 3 entrences (unit quaternion)
     :param axes: string that encodes the order of the axes and
diff --git a/navipy/maths/test_euler.py b/navipy/maths/test_euler.py
index 14b892e..c1ea966 100644
--- a/navipy/maths/test_euler.py
+++ b/navipy/maths/test_euler.py
@@ -50,7 +50,7 @@ class TestEuler(unittest.TestCase):
         """
         Test orientation from one convention to another
         """
-        refkey = 'sxyz'
+        refkey = 'xyz'
         for key in list(_AXES2TUPLE.keys()):
             rotation_0 = euler.matrix(1, 2, 3, refkey)[:3, :3]
             [ai, aj, ak] = euler.from_matrix(rotation_0, key)
@@ -95,7 +95,7 @@ class TestEuler(unittest.TestCase):
         of wrong type, value are passed to the
         euler.angle_rate_matrix function
         """
-        for a, b, c, d in [(None, 2, 6, 'rxyz'), (5.0, 4.0, None, 'sxyx')]:
+        for a, b, c, d in [(None, 2, 6, 'rxyz'), (5.0, 4.0, None, 'xyx')]:
             with self.assertRaises(TypeError):
                 euler.angle_rate_matrix(a, b, c, d)
 
@@ -112,12 +112,12 @@ class TestEuler(unittest.TestCase):
         of wrong type, value are passed to the
         euler.angle_rate_matrix function
         """
-        for a, b, c, d, e, f, g in [(None, 2, 6, 8, 7, 8, 'sxyz'),
-                                    (9.0, 'er', 2, 3, 3, 5, 'sxyz'),
-                                    (5.0, 4.0, None, 8.0, 8.0, 4.0, 'sxyz'),
-                                    (np.nan, 8.0, 7.0, '0', 6.0, 9.0, 'sxyz'),
-                                    (4.0, 2.0, 1.0, 3.0, 'w', 2.0, 'sxyz'),
-                                    (1.0, 2.0, 3.0, 4.0, None, 4, 'sxyz')]:
+        for a, b, c, d, e, f, g in [(None, 2, 6, 8, 7, 8, 'xyz'),
+                                    (9.0, 'er', 2, 3, 3, 5, 'xyz'),
+                                    (5.0, 4.0, None, 8.0, 8.0, 4.0, 'xyz'),
+                                    (np.nan, 8.0, 7.0, '0', 6.0, 9.0, 'xyz'),
+                                    (4.0, 2.0, 1.0, 3.0, 'w', 2.0, 'xyz'),
+                                    (1.0, 2.0, 3.0, 4.0, None, 4, 'xyz')]:
             with self.assertRaises(TypeError):
                 euler.angular_velocity(a, b, c, d, e, f, g)
 
@@ -134,7 +134,7 @@ class TestEuler(unittest.TestCase):
         # dai = 0
         # daj = 0
         # dak = 1
-        E = angle_rate_matrix(ai, aj, ak, 'szxz')
+        E = angle_rate_matrix(ai, aj, ak, 'zxz')
         testE = [[np.sin(aj) * np.sin(ak), np.cos(ak), 0],
                  [-np.sin(aj) * np.cos(ak), np.sin(ak), 0],
                  [np.cos(aj), 0, 1]]
@@ -155,7 +155,7 @@ class TestEuler(unittest.TestCase):
         E_p = [[0, np.cos(ai), np.sin(aj) * np.sin(ai)],
                [0, -np.sin(ai), np.sin(aj) * np.cos(ai)],
                [1, 0, np.cos(aj)]]
-        E_fkt = angle_rate_matrix(ai, aj, ak, 'szxz')
+        E_fkt = angle_rate_matrix(ai, aj, ak, 'zxz')
         self.assertTrue(np.allclose(E, E_fkt))
         w = np.dot(E, [dai, daj, dak])
         w_p = np.dot(E_p, [dai, daj, dak])
@@ -169,7 +169,7 @@ class TestEuler(unittest.TestCase):
                  -s(aj) * c(ak),
                  c(aj)]]
         Rijk_test = np.dot(R3(ai), np.dot(R1(aj), R3(ak)))
-        Rijk_fkt = matrix(ai, aj, ak, 'szxz')[:3, :3]
+        Rijk_fkt = matrix(ai, aj, ak, 'zxz')[:3, :3]
         self.assertTrue(np.allclose(Rijk, Rijk_fkt))
         self.assertTrue(np.allclose(Rijk, Rijk_test))
         new_w_p = np.dot(Rijk, w)
@@ -192,7 +192,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MR3, np.dot(MR2, e1))
         p2 = np.dot(MR3, e2)
         rotM = np.column_stack([p1, p2, e3])
-        M = angle_rate_matrix(ea, eb, ec, 'sxyz')
+        M = angle_rate_matrix(ea, eb, ec, 'xyz')
         self.assertTrue(np.all(rotM == M))
 
         # ryzx
@@ -204,7 +204,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e1])
-        M = angle_rate_matrix(ea, eb, ec, 'syzx')
+        M = angle_rate_matrix(ea, eb, ec, 'yzx')
         self.assertTrue(np.allclose(rotM, M))
 
         # ryxz
@@ -216,7 +216,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e1)
         rotM = np.column_stack([p1, p2, e3])
-        M = angle_rate_matrix(ea, eb, ec, 'syxz')
+        M = angle_rate_matrix(ea, eb, ec, 'yxz')
         self.assertTrue(np.allclose(rotM, M))
 
         # rxzy
@@ -228,7 +228,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e1))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e2])
-        M = angle_rate_matrix(ea, eb, ec, 'sxzy')
+        M = angle_rate_matrix(ea, eb, ec, 'xzy')
         self.assertTrue(np.allclose(rotM, M))
 
         # rzxy
@@ -240,7 +240,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e3))
         p2 = np.dot(MRk, e1)
         rotM = np.column_stack([p1, p2, e2])
-        M = angle_rate_matrix(ea, eb, ec, 'szxy')
+        M = angle_rate_matrix(ea, eb, ec, 'zxy')
         self.assertTrue(np.allclose(rotM, M))
 
         # rxzx
@@ -252,7 +252,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e1))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e1])
-        M = angle_rate_matrix(ea, eb, ec, 'sxzx')
+        M = angle_rate_matrix(ea, eb, ec, 'xzx')
         self.assertTrue(np.allclose(rotM, M))
 
         # rzxz
@@ -273,8 +273,8 @@ class TestEuler(unittest.TestCase):
         #           -s(ea)*s(ec)+c(ea)*c(eb)*c(ec),
         #           c(ea)*s(eb)],
         #          [s(eb)*s(ec), -s(eb)*c(ec), c(eb)]]
-        # mfunc = angle_rate_matrix(ea, eb, ec, 'szxz')
-        M = angle_rate_matrix(ea, eb, ec, 'szxz')
+        # mfunc = angle_rate_matrix(ea, eb, ec, 'zxz')
+        M = angle_rate_matrix(ea, eb, ec, 'zxz')
         self.assertTrue(np.allclose(rotM, M))
 
         # rxyx
@@ -286,7 +286,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e1))
         p2 = np.dot(MRk, e2)
         rotM = np.column_stack([p1, p2, e1])
-        M = angle_rate_matrix(ea, eb, ec, 'sxyx')
+        M = angle_rate_matrix(ea, eb, ec, 'xyx')
         self.assertTrue(np.allclose(rotM, M))
 
         # ryxy
@@ -298,7 +298,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e1)
         rotM = np.column_stack([p1, p2, e2])
-        M = angle_rate_matrix(ea, eb, ec, 'syxy')
+        M = angle_rate_matrix(ea, eb, ec, 'yxy')
         self.assertTrue(np.allclose(rotM, M))
 
         # ryzy
@@ -310,7 +310,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e2))
         p2 = np.dot(MRk, e3)
         rotM = np.column_stack([p1, p2, e2])
-        M = angle_rate_matrix(ea, eb, ec, 'syzy')
+        M = angle_rate_matrix(ea, eb, ec, 'yzy')
         self.assertTrue(np.allclose(rotM, M))
 
         # rzyz
@@ -322,7 +322,7 @@ class TestEuler(unittest.TestCase):
         p1 = np.dot(MRk, np.dot(MRj, e3))
         p2 = np.dot(MRk, e2)
         rotM = np.column_stack([p1, p2, e3])
-        M = angle_rate_matrix(ea, eb, ec, 'szyz')
+        M = angle_rate_matrix(ea, eb, ec, 'zyz')
         self.assertTrue(np.allclose(rotM, M))
 
 
diff --git a/navipy/maths/test_homogeneous_transformations.py b/navipy/maths/test_homogeneous_transformations.py
index 2677bb4..805ca8a 100644
--- a/navipy/maths/test_homogeneous_transformations.py
+++ b/navipy/maths/test_homogeneous_transformations.py
@@ -220,9 +220,9 @@ class TestHT(unittest.TestCase):
         self.assertEqual(scale[0], factor)
 
     def test_decompose_matrix_rotation(self):
-        rotation_0 = euler.matrix(1, 2, 3, 'sxyz')
+        rotation_0 = euler.matrix(1, 2, 3, 'xyz')
         _, _, angles, _, _ = ht.decompose_matrix(rotation_0)
-        rotation_1 = euler.matrix(*angles, 'sxyz')
+        rotation_1 = euler.matrix(*angles, 'xyz')
         self.assertTrue(np.allclose(rotation_0, rotation_1))
 
     def test_compose_matrix(self):
@@ -252,7 +252,7 @@ class TestHT(unittest.TestCase):
         scale_o = np.random.rand(3)
         translation_o = [1, 2, 3]
         shear_o = [0, np.tan(angles_o[1]), 0]
-        axes = 'sxyz'
+        axes = 'xyz'
         matrix = ht.compose_matrix(scale_o, shear_o, angles_o,
                                    translation_o, axes=axes)
         scale, shear, angles, trans, persp = ht.decompose_matrix(matrix, axes)
diff --git a/navipy/maths/test_quaternion.py b/navipy/maths/test_quaternion.py
index a21cad1..e49bbe0 100644
--- a/navipy/maths/test_quaternion.py
+++ b/navipy/maths/test_quaternion.py
@@ -7,7 +7,7 @@ import navipy.maths.random as random
 
 class TestQuaternions(unittest.TestCase):
     def test_quaternion_from_euler(self):
-        quaternion = quat.from_euler(1, 2, 3, 'syxz')
+        quaternion = quat.from_euler(1, 2, 3, 'yxz')
         self.assertTrue(np.allclose(quaternion,
                                     [0.435953, 0.310622,
                                      -0.718287, 0.444435]))
diff --git a/navipy/processing/test_OpticFlow.py b/navipy/processing/test_OpticFlow.py
index 2669ad0..9ff3628 100644
--- a/navipy/processing/test_OpticFlow.py
+++ b/navipy/processing/test_OpticFlow.py
@@ -739,8 +739,8 @@ class TestCase(unittest.TestCase):
 
         angles=[ypr[0], ypr[1],ypr[2], -ypr[0], -ypr[1], -ypr[2]]
 
-        #for c in ['sxyz','sxyx','sxzy','sxzx','syzx','syzy','syxz','syxy',
-        #          'szxy','szxz','szyx','szyz','rzyx','rxyx','ryzx','rxzx',
+        #for c in ['xyz','xyx','xzy','xzx','yzx','yzy','yxz','yxy',
+        #          'zxy','zxz','zyx','zyz','rzyx','rxyx','ryzx','rxzx',
         #          'rxzy','ryzy','rzxy','ryxy','ryxz','rzxz','rxyz','rzyz']:
         for al in angles:
                 for bl in angles:
diff --git a/navipy/trajectories/test_markers.py b/navipy/trajectories/test_markers.py
index d33807c..1b22758 100644
--- a/navipy/trajectories/test_markers.py
+++ b/navipy/trajectories/test_markers.py
@@ -88,7 +88,7 @@ class TestMarkersTransform(unittest.TestCase):
         apex0 = self.random_apex()
         apex1 = self.random_apex()
         apex2 = self.random_apex()
-        euler_axes = 'sxyz'
+        euler_axes = 'xyz'
         for triangle_mode in mtf._modes:
             scale, shear, angles, translate, perspective =\
                 mtf.markers2decompose(
@@ -105,7 +105,7 @@ class TestMarkersTransform(unittest.TestCase):
         mark0 = pd.Series(data=0, index=['x', 'y', 'z'])
         for axis_alignement, euler_axes, known_angle in zip(
                 ['x-axis', 'z-axis', 'y-axis'],
-                ['szyx', 'syxz', 'szxy'],
+                ['zyx', 'yxz', 'zxy'],
                 [angles[2], angles[2], angles[2]]):
             triangle_mode = 'x-axis=median-from-0'
             transform = compose_matrix(angles=angles,
diff --git a/navipy/trajectories/test_trajectory.py b/navipy/trajectories/test_trajectory.py
index 8640151..d8f74e8 100644
--- a/navipy/trajectories/test_trajectory.py
+++ b/navipy/trajectories/test_trajectory.py
@@ -20,7 +20,7 @@ class TestTrajectoryTransform(unittest.TestCase):
         markers.index.name = None
         # Create a random trajectory
         trajectory = Trajectory(indeces=np.arange(10),
-                                rotconv='sxyz')
+                                rotconv='xyz')
         trajectory.x = 100 * (np.random.rand(trajectory.shape[0]) - 0.5)
         trajectory.y = 100 * (np.random.rand(trajectory.shape[0]) - 0.5)
         trajectory.z = 100 * (np.random.rand(trajectory.shape[0]) - 0.5)
@@ -32,12 +32,12 @@ class TestTrajectoryTransform(unittest.TestCase):
             (np.random.rand(trajectory.shape[0]) - 0.5)
         # Create test trajectory
         traj_test = Trajectory(indeces=np.arange(10),
-                               rotconv='sxyz')
+                               rotconv='xyz')
         # Devide by two the second anle, because of gimbal lock
         col = (trajectory.rotation_mode, 'alpha_1')
         trajectory.loc[:, col] = trajectory.loc[:, col] / 2
         # forward
-        non_tested_euler = ['sxzy', 'sxzx', 'syxy',
+        non_tested_euler = ['xzy', 'xzx', 'yxy',
                             'rxzx', 'rxzy', 'ryxy']
         print('EULER NOT TESTED!!: ', non_tested_euler)
         for euler_axes in list(htconst._AXES2TUPLE.keys()):
diff --git a/navipy/trajectories/transformations.py b/navipy/trajectories/transformations.py
index 9fcb694..e3d0631 100644
--- a/navipy/trajectories/transformations.py
+++ b/navipy/trajectories/transformations.py
@@ -231,9 +231,9 @@ rotation convention.
 
     The temporary rotation convention used two determine the euler angles are:
 
-    * szyx, for axis alignment x-axis
-    * szxy, for axis alignment y-axis
-    * syxz, for axis alignment z-axis
+    * zyx, for axis alignment x-axis
+    * zxy, for axis alignment y-axis
+    * yxz, for axis alignment z-axis
 
     Note: If you know the angle in your rotation convention, then you \
 can run this function through a minimisation procedure with free parameter \
@@ -243,21 +243,21 @@ known angle until you get the desired orientation (see twomarkers2euler)
     vector = mark1 - mark0
     vector = normalise_vec(vector)
     if axis_alignement == 'x-axis':
-        axes_convention = 'szyx'
+        axes_convention = 'zyx'
         beta = np.arcsin(vector.z)
         alpha = np.arctan2(-vector.y / np.cos(beta),
                            vector.x / np.cos(beta))
         gamma = known_angle
         angles = [alpha, beta, gamma]
     elif axis_alignement == 'y-axis':
-        axes_convention = 'szxy'
+        axes_convention = 'zxy'
         gamma = np.arcsin(-vector.z)
         alpha = np.arctan2(vector.x / np.cos(gamma),
                            vector.y / np.cos(gamma))
         beta = known_angle
         angles = [alpha, gamma, beta]
     elif axis_alignement == 'z-axis':
-        axes_convention = 'syxz'
+        axes_convention = 'yxz'
         gamma = np.arcsin(vector.y)
         beta = np.arctan2(-vector.x / np.cos(gamma),
                           vector.z / np.cos(gamma))
-- 
GitLab