diff --git a/overcooked_simulator/gym_env.py b/overcooked_simulator/gym_env.py
new file mode 100644
index 0000000000000000000000000000000000000000..ddf29efe2c51d2a36efe5e00659ea373ebe1a08b
--- /dev/null
+++ b/overcooked_simulator/gym_env.py
@@ -0,0 +1,198 @@
+import json
+from datetime import timedelta
+from enum import Enum
+from pathlib import Path
+
+import cv2
+import numpy as np
+import yaml
+
+from overcooked_simulator import ROOT_DIR
+from overcooked_simulator.gui_2d_vis.drawing import Visualizer
+from overcooked_simulator.overcooked_environment import (
+    Environment,
+    Action,
+    ActionType,
+    InterActionData,
+)
+
+
+class SimpleActionSpace(Enum):
+    Up = "Up"
+    Down = "Down"
+    Left = "Left"
+    Right = "Right"
+    Interact = "Interact"
+    Put = "Put"
+
+
+class EnvGymWrapper:
+    """Should enable this:
+    observation, reward, terminated, truncated, info = env.step(action)
+    """
+
+    def __init__(self):
+        environment_config_path: Path = (
+            ROOT_DIR / "game_content" / "environment_config.yaml"
+        )
+        layout_path: Path = ROOT_DIR / "game_content" / "layouts" / "basic.layout"
+        item_info_path: Path = ROOT_DIR / "game_content" / "item_info.yaml"
+
+        self.env: Environment = Environment(
+            env_config=environment_config_path,
+            layout_config=layout_path,
+            item_info=item_info_path,
+        )
+
+        with open(ROOT_DIR / "gui_2d_vis" / "visualization.yaml", "r") as file:
+            visualization_config = yaml.safe_load(file)
+
+        self.visualizer: Visualizer = Visualizer(config=visualization_config)
+
+        self.player_name = str(0)
+        self.env.add_player(self.player_name)
+        self.player_id = list(self.env.players.keys())[0]
+
+        self.visualizer.create_player_colors(1)
+
+        # self.action_space = {idx: value for idx, value in enumerate(SimpleActionSpace)}
+        self.action_space = {
+            0: SimpleActionSpace.Up,
+            1: SimpleActionSpace.Down,
+            2: SimpleActionSpace.Left,
+            3: SimpleActionSpace.Right,
+            4: SimpleActionSpace.Put,
+        }
+
+        print(self.action_space)
+
+        self.global_step_time = 0.05
+        self.in_between_steps = 10
+
+    def get_env_action(self, simple_action, duration):
+        match simple_action:
+            case SimpleActionSpace.Up:
+                return Action(
+                    self.player_id,
+                    ActionType.MOVEMENT,
+                    np.array([0, -1]),
+                    duration,
+                )
+            case SimpleActionSpace.Down:
+                return Action(
+                    self.player_id,
+                    ActionType.MOVEMENT,
+                    np.array([0, 1]),
+                    duration,
+                )
+
+            case SimpleActionSpace.Left:
+                return Action(
+                    self.player_id,
+                    ActionType.MOVEMENT,
+                    np.array([-1, 0]),
+                    duration,
+                )
+            case SimpleActionSpace.Right:
+                return Action(
+                    self.player_id,
+                    ActionType.MOVEMENT,
+                    np.array([1, 0]),
+                    duration,
+                )
+            case SimpleActionSpace.Put:
+                return Action(
+                    self.player_id,
+                    ActionType.PUT,
+                    InterActionData.START,
+                    duration,
+                )
+            case SimpleActionSpace.Put:
+                return Action(
+                    self.player_id,
+                    ActionType.INTERACT,
+                    InterActionData.START,
+                    duration,
+                )
+        # case SimpleActionSpace.Interact:
+        #     pass
+
+    def gym_env_setup(self):
+        self.action_space
+        self.observation_space
+        self.reward_range
+
+    def render(self):
+        pass
+
+    def close(self):
+        pass
+
+    def sample_random_action(self):
+        return np.random.randint(len(self.action_space))
+
+    def step(self, simple_action) -> tuple:
+        simple_action = self.action_space[simple_action]
+        action = self.get_env_action(simple_action, self.global_step_time)
+
+        self.env.perform_action(action)
+
+        print(self.env.game_ended)
+        for i in range(self.in_between_steps):
+            self.env.step(
+                timedelta(seconds=self.global_step_time / self.in_between_steps)
+            )
+
+        state = self.env.get_json_state(player_id=self.player_id)
+        json_dict = json.loads(state)
+        observation = self.visualizer.get_state_image(
+            grid_size=30, state=json_dict
+        ).transpose((1, 0, 2))
+
+        print(observation.shape)
+
+        cv2.imshow("Overcooked", observation[:, :, ::-1])
+        cv2.waitKey(1)
+
+        reward = -1
+        terminated = False
+        truncated = (False,)
+        info = "hey"
+        return observation, reward, terminated, truncated, info
+
+    def reset(self):
+        environment_config_path: Path = (
+            ROOT_DIR / "game_content" / "environment_config.yaml"
+        )
+        layout_path: Path = ROOT_DIR / "game_content" / "layouts" / "basic.layout"
+        item_info_path: Path = ROOT_DIR / "game_content" / "item_info.yaml"
+
+        self.env: Environment = Environment(
+            env_config=environment_config_path,
+            layout_config=layout_path,
+            item_info=item_info_path,
+        )
+
+        with open(ROOT_DIR / "gui_2d_vis" / "visualization.yaml", "r") as file:
+            visualization_config = yaml.safe_load(file)
+
+        self.visualizer: Visualizer = Visualizer(config=visualization_config)
+
+        self.player_name = str(0)
+        self.env.add_player(self.player_name)
+        self.player_id = list(self.env.players.keys())[0]
+
+        self.visualizer.create_player_colors(1)
+
+
+def main():
+    env = EnvGymWrapper()
+
+    while True:
+        action = env.sample_random_action()
+        print(action)
+        env.step(action)
+
+
+if __name__ == "__main__":
+    main()