import time import cv2 from stable_baselines3 import DQN from gym_env import EnvGymWrapper model_save_path = "logs/reinforcement_learning/rl_agent_checkpoints/overcooked_DQN.zip" model_class = DQN model = model_class.load(model_save_path) env = EnvGymWrapper() # check_env(env) obs, info = env.reset() while True: action, _states = model.predict(obs, deterministic=False) obs, reward, terminated, truncated, info = env.step(int(action)) print(reward) rgb_img = env.render() cv2.imshow("env", rgb_img) cv2.waitKey(0) if terminated or truncated: obs, info = env.reset() time.sleep(1 / env.metadata["render_fps"])