diff --git a/mu_map/dataset/mock.py b/mu_map/dataset/mock.py
deleted file mode 100644
index 9f33b3c900f0a85b053a2e7efabedb04de4e783b..0000000000000000000000000000000000000000
--- a/mu_map/dataset/mock.py
+++ /dev/null
@@ -1,27 +0,0 @@
-from mu_map.dataset.default import MuMapDataset
-from mu_map.dataset.normalization import MaxNormTransform
-
-
-class MuMapMockDataset(MuMapDataset):
-    def __init__(self, dataset_dir: str = "data/initial/", num_images: int = 16, logger=None):
-        super().__init__(dataset_dir=dataset_dir, transform_normalization=MaxNormTransform(), logger=logger)
-        self.len = num_images
-
-    def __getitem__(self, index: int):
-        recon, mu_map = super().__getitem__(0)
-        recon = recon[:, :32, :, :]
-        mu_map = mu_map[:, :32, :, :]
-        return recon, mu_map
-
-    def __len__(self):
-        return self.len
-
-
-if __name__ == "__main__":
-    import cv2 as cv
-    import numpy as np
-
-    from mu_map.dataset.default import main
-
-    dataset = MuMapMockDataset()
-    main(dataset)
diff --git a/mu_map/test.py b/mu_map/test.py
index f761307eb19eb2f460c71e73705bd009a3b6a01d..84dcf684f7ea4c0a3e8403318a37ee2b6dd6c467 100644
--- a/mu_map/test.py
+++ b/mu_map/test.py
@@ -4,29 +4,31 @@ import numpy as np
 import torch
 
 from mu_map.dataset.default import MuMapDataset
-from mu_map.dataset.mock import MuMapMockDataset
-from mu_map.dataset.normalization import norm_max, norm_gaussian
+from mu_map.dataset.normalization import MeanNormTransform
+from mu_map.dataset.transform import PadCropTranform, SequenceTransform
 from mu_map.models.unet import UNet
 from mu_map.util import to_grayscale, COLOR_WHITE
 
 torch.set_grad_enabled(False)
 
-dataset = MuMapMockDataset("data/second/")
+dataset = MuMapDataset(
+    "data/second/",
+    transform_normalization=SequenceTransform([
+        MeanNormTransform(),
+        PadCropTranform(dim=3, size=32)
+    ]),
+)
 
-# model = UNet(in_channels=1, features=[8, 16])
 model = UNet(in_channels=1)
 device = torch.device("cpu")
-weights = torch.load("train_data/snapshots/val_min_Model.pth", map_location=device)
-model.load_state_dict(weights)
+# weights = torch.load("train_data/snapshots/val_min_Model.pth", map_location=device)
+# model.load_state_dict(weights)
 model = model.eval()
 
 recon, mu_map = dataset[0]
 recon = recon.unsqueeze(dim=0)
-# recon = norm_max(recon)
-recon = norm_gaussian(recon)
 
 output = model(recon)
-# output = output * 40206.0
 
 diff = ((mu_map - output) ** 2).mean()
 print(f"Diff: {diff:.5f}")