diff --git a/mu_map/vis/loss_curve.py b/mu_map/vis/loss_curve.py
index 336b1ca949066b82662ff2628f64c883b2d973b8..8262b5e4d99018f1e92988765435eda08c2e173a 100644
--- a/mu_map/vis/loss_curve.py
+++ b/mu_map/vis/loss_curve.py
@@ -14,14 +14,38 @@ plt.rc("axes", titlesize=18)  # fontsize of the axes title
 # https://colorbrewer2.org/#type=diverging&scheme=RdBu&n=3lk
 COLORS = ["#ef8a62", "#67a9cf"]
 
-parser = argparse.ArgumentParser(description="TODO", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
-parser.add_argument("logfile", type=str, help="TODO")
-parser.add_argument("--normalize", action="store_true", help="TODO")
+parser = argparse.ArgumentParser(
+    description="plot the losses written to a logfile", formatter_class=argparse.ArgumentDefaultsHelpFormatter
+)
+parser.add_argument(
+    "logfile",
+    type=str,
+    help="the logfile from which the losses (training and validation) are parsed",
+)
+parser.add_argument(
+    "--normalize",
+    action="store_true",
+    help="normalize the loss values (both training and validation losses are normalized separately)",
+)
+parser.add_argument(
+    "--out",
+    "-o",
+    type=str,
+    default="loss.png",
+    help="the file into which the resulting plot is saved",
+)
+parser.add_argument(
+    "--verbose",
+    "-v",
+    action="store_true",
+    help="do not only save the figure but also attempt to visualize it (opens a window)",
+)
 args = parser.parse_args()
 
 logs = parse_file(args.logfile)
 logs = list(filter(lambda logline: logline.loglevel == "INFO", logs))
 
+
 def parse_loss(logs, phase):
     _logs = map(lambda logline: logline.message, logs)
     _logs = filter(lambda log: phase in log, _logs)
@@ -40,6 +64,7 @@ def parse_loss(logs, phase):
 
     return np.array(list(epochs)), np.array(list(losses))
 
+
 phases = ["TRAIN", "VAL"]
 labels = ["Training", "Validation"]
 
@@ -62,5 +87,7 @@ ax.legend()
 ax.set_xlabel("Epoch")
 ax.set_ylabel("Loss")
 plt.tight_layout()
-plt.show()
+plt.savefig(args.out, dpi=300)
 
+if args.verbose:
+    plt.show()