diff --git a/mu_map/file/interfile.py b/mu_map/file/interfile.py index b7202e8e199e1078b8e9e63475915ef389b5e9ea..85cef0ad767225bc3a2e84d31d4a2215caccd051 100644 --- a/mu_map/file/interfile.py +++ b/mu_map/file/interfile.py @@ -8,6 +8,9 @@ Interfile = Tuple[Dict[str, str], np.ndarray] @dataclass class _InterfileKeys: + """ + Data class defining keys for an Interfile header. + """ placeholder: str = "{_}" _dim: str = f"matrix size [{placeholder}]" @@ -18,6 +21,9 @@ class _InterfileKeys: bytes_per_pixel: str = "number of bytes per pixel" number_format: str = "number format" + patient_orientation: str = "patient orientation" + patient_rotation: str = "supine" + def dim(self, index: int) -> str: return self._dim.replace(self.placeholder, str(index)) @@ -26,22 +32,6 @@ class _InterfileKeys: InterfileKeys = _InterfileKeys() -""" -Several keys defined in INTERFILE headers. -""" -KEY_DIM_1 = "matrix size [1]" -KEY_DIM_2 = "matrix size [2]" -KEY_DIM_3 = "matrix size [3]" -KEY_SPACING_1 = "scaling factor (mm/pixel) [1]" -KEY_SPACING_2 = "scaling factor (mm/pixel) [2]" -KEY_SPACING_3 = "scaling factor (mm/pixel) [2]" -KEY_NPROJECTIONS = "number of projections" - -KEY_DATA_FILE = "name of data file" - -KEY_BYTES_PER_PIXEL = "number of bytes per pixel" -KEY_NUMBER_FORMAT = "number format" - """ A template of an INTERFILE header. @@ -55,6 +45,8 @@ GENERAL DATA := GENERAL IMAGE DATA := type of data := Tomographic imagedata byte order := LITTLEENDIAN +patient orientation := feet_in +patient rotation := supine isotope name := ^99m^Technetium SPECT STUDY (General) := process status := Reconstructed @@ -131,15 +123,15 @@ def load_interfile(filename: str) -> Tuple[Dict[str, str], np.ndarray]: """ header = parse_interfile_header(filename) - dim_x = int(header[KEY_DIM_1]) - dim_y = int(header[KEY_DIM_2]) - dim_z = int(header[KEY_DIM_3]) if KEY_DIM_3 in header else int(header[KEY_NPROJECTIONS]) + dim_x = int(header[InterfileKeys.dim(1)]) + dim_y = int(header[InterfileKeys.dim(2)]) + dim_z = int(header[InterfileKeys.dim(3)]) if InterfileKeys.dim(3) in header else int(header[InterfileKeys.n_projections]) - bytes_per_pixel = int(header[KEY_BYTES_PER_PIXEL]) - num_format = header[KEY_NUMBER_FORMAT] + bytes_per_pixel = int(header[InterfileKeys.bytes_per_pixel]) + num_format = header[InterfileKeys.number_format] dtype = type_by_format(num_format, bytes_per_pixel) - data_file = os.path.join(os.path.dirname(filename), header[KEY_DATA_FILE]) + data_file = os.path.join(os.path.dirname(filename), header[InterfileKeys.data_file]) with open(data_file, mode="rb") as f: image = np.frombuffer(f.read(), dtype) image = image.reshape((dim_z, dim_y, dim_x)) @@ -162,10 +154,10 @@ def write_interfile(filename: str, header: Dict[str, str], image: np.ndarray): filename_data = f"{filename}.v" filename_header = f"{filename}.hv" - header[KEY_DATA_FILE] = os.path.basename(filename_data) - header[KEY_DIM_3] = str(image.shape[0]) - header[KEY_DIM_2] = str(image.shape[1]) - header[KEY_DIM_1] = str(image.shape[2]) + header[InterfileKeys.data_file] = os.path.basename(filename_data) + header[InterfileKeys.dim(3)] = str(image.shape[0]) + header[InterfileKeys.dim(2)] = str(image.shape[1]) + header[InterfileKeys.dim(1)] = str(image.shape[2]) image = image.astype(np.float32) diff --git a/mu_map/recon/osem.py b/mu_map/recon/osem.py index d4abd98a74695ce847e85a3c07e7462e4080cf1c..ef47a18ec186cc4af15ad44de6a7bb8df14d789e 100644 --- a/mu_map/recon/osem.py +++ b/mu_map/recon/osem.py @@ -10,10 +10,7 @@ from mu_map.file.interfile import ( parse_interfile_header_str, load_interfile, write_interfile, - KEY_DIM_1, - KEY_DIM_2, - KEY_SPACING_1, - KEY_SPACING_2, + InterfileKeys, TEMPLATE_HEADER_IMAGE, ) from mu_map.recon.filter import GaussianFilter @@ -77,13 +74,13 @@ def uniform_estimate(projection: Tuple[Dict[str, str], np.ndarray]): (image_proj.shape[1], image_proj.shape[2], image_proj.shape[2]), np.float32 ) - offset = -0.5 * image_proj.shape[2] * float(header_proj[KEY_SPACING_1]) + offset = -0.5 * image_proj.shape[2] * float(header_proj[InterfileKeys.spacing(1)]) header = TEMPLATE_HEADER_IMAGE.replace("{ROWS}", str(image.shape[2])) header = header.replace("{COLUMNS}", str(image.shape[1])) header = header.replace("{SLICES}", str(image.shape[0])) - header = header.replace("{SPACING_X}", header_proj[KEY_SPACING_1]) - header = header.replace("{SPACING_Y}", header_proj[KEY_SPACING_1]) - header = header.replace("{SPACING_Z}", header_proj[KEY_SPACING_2]) + header = header.replace("{SPACING_X}", header_proj[InterfileKeys.spacing(1)]) + header = header.replace("{SPACING_Y}", header_proj[InterfileKeys.spacing(1)]) + header = header.replace("{SPACING_Z}", header_proj[InterfileKeys.spacing(1)]) header = header.replace("{OFFSET_X}", f"{offset:.4f}") header = header.replace("{OFFSET_Y}", f"{offset:.4f}") header = parse_interfile_header_str(header) diff --git a/mu_map/recon/project.py b/mu_map/recon/project.py index 5aaaa900a69717e7fd6bb9c206a46f212aab0e46..05cce8e703655bc36d27d6d006cc4d91ced820e3 100644 --- a/mu_map/recon/project.py +++ b/mu_map/recon/project.py @@ -9,8 +9,7 @@ import stir from mu_map.file.interfile import ( load_interfile, write_interfile, - KEY_SPACING_1, - KEY_SPACING_3, + InterfileKeys, ) @@ -28,6 +27,8 @@ type of data := Tomographic imagedata byte order := LITTLEENDIAN number format := float number of bytes per pixel := 4 +patient orientation := feet_in +patient rotation := supine SPECT STUDY (General) := ;matrix axis label [2] := axial coordinate @@ -88,8 +89,8 @@ def forward_project( header_proj = TEMPLATE_HEADER_PROJ.replace("{DATA_FILE}", filename_proj_data) header_proj = header_proj.replace("{SLICES}", str(n_slices)) header_proj = header_proj.replace("{BINS}", str(n_bins)) - header_proj = header_proj.replace("{SPACING_SLICES}", recon_header[KEY_SPACING_3]) - header_proj = header_proj.replace("{SPACING_BINS}", recon_header[KEY_SPACING_1]) + header_proj = header_proj.replace("{SPACING_SLICES}", recon_header[InterfileKeys.spacing(3)]) + header_proj = header_proj.replace("{SPACING_BINS}", recon_header[InterfileKeys.spacing(1)]) header_proj = header_proj.replace("{N_PROJECTIONS}", str(n_projections)) header_proj = header_proj.replace("{ROTATION}", str(rotation)) header_proj = header_proj.replace("{START_ANGLE}", str(start_angle)) diff --git a/mu_map/training/distance.py b/mu_map/training/distance.py index d40ea9982fa85c01f1d384abcc65af7bd9e35078..3fdb79cf33d9e02918281ab874f08c51e89e653b 100644 --- a/mu_map/training/distance.py +++ b/mu_map/training/distance.py @@ -53,7 +53,6 @@ if __name__ == "__main__": MaxNormTransform, GaussianNormTransform, ) - from mu_map.dataset.transform import ScaleTransform from mu_map.logging import add_logging_args, get_logger_by_args from mu_map.models.unet import UNet diff --git a/mu_map/vis/slices.py b/mu_map/vis/slices.py index 15c89159bfad693f75ac96491784aaeffbfcb7ab..ce36eaa715551574fab2fb73d6974a387ce08eb1 100644 --- a/mu_map/vis/slices.py +++ b/mu_map/vis/slices.py @@ -2,6 +2,7 @@ from typing import List import numpy as np +from mu_map.dataset.util import align_images from mu_map.file.dicom import load_dcm_img from mu_map.file.interfile import load_interfile_img @@ -27,20 +28,23 @@ def load_image(filename: str) -> np.ndarray: raise ValueError(f"Could not load {filename} as DICOM or INTERFILE image!") -def join_images(images: List[np.ndarray], separator: np.ndarray) -> List[np.ndarray]: +def join_images( + images: List[np.ndarray], separator: np.ndarray, vertical: bool = False +) -> List[np.ndarray]: """ Create a new image by joining all input images along a separator image. - Note that the images are joined horizontally. Thus, their shape along - the first axis must be equal. + If joining horizontally, their shape must be equal along their first axis. + If joining vertically, their shape must be equal along their second axis. :param images: a list of images to join :param separator: a separator image inserted between all images + :param vertical: join images vertically instead of horizontally :return: a new image joined as described above """ res = [] for image in images: res += [image, separator] - return np.hstack(res[:-1]) + return np.vstack(res[:-1]) if vertical else np.hstack(res[:-1]) if __name__ == "__main__": @@ -51,14 +55,26 @@ if __name__ == "__main__": from mu_map.util import to_grayscale, COLOR_WHITE parser = argparse.ArgumentParser( - description="Visualize 3D Volumes as a video of their slices" + description="Visualize 3D Volumes as a video of their slices", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("images", type=str, nargs="+", help="the images to visualize") parser.add_argument( "--resize", type=int, default=512, help="resize images to this size" ) parser.add_argument( - "--fps", type=int, default=25, help="frames (slices) to show per second" + "--fps", type=int, default=10, help="frames (slices) to show per second" + ) + parser.add_argument("--align", action="store_true", help="center align images") + parser.add_argument( + "--shared_range", + action="store_true", + help="normalize all images to the same value range", + ) + parser.add_argument( + "--vertical", + action="store_true", + help="join images vertically instead of horizontally", ) parser.add_argument( "--window_name", type=str, default="Slices", help="name of the displayed window" @@ -66,9 +82,33 @@ if __name__ == "__main__": args = parser.parse_args() images = list(map(load_image, args.images)) - scales = list(map(lambda image: args.resize / image.shape[1], images)) + + if args.align: + image_with_least_slices = sorted(images, key=lambda image: image.shape[0])[0] + images = list( + map(lambda image: align_images(image, image_with_least_slices)[0], images) + ) + + scales = list( + map( + lambda image: args.resize / image.shape[2] + if args.vertical + else args.resize / image.shape[1], + images, + ) + ) slices = [0] * len(images) - space = np.full((args.resize, 10), 239, np.uint8) + space = ( + np.full((10, args.resize), 239, np.uint8) + if args.vertical + else np.full((args.resize, 10), 239, np.uint8) + ) + + min_vals = list(map(lambda image: image.min(), images)) + max_vals = list(map(lambda image: image.max(), images)) + if args.shared_range: + min_vals = [min(min_vals)] * len(images) + max_vals = [max(max_vals)] * len(images) cv.namedWindow(args.window_name, cv.WINDOW_NORMAL) cv.resizeWindow(args.window_name, 1600, 900) @@ -77,16 +117,24 @@ if __name__ == "__main__": current_timeout = timeout while True: _images = [] - for i, (image, _slice, scale) in enumerate(zip(images, slices, scales)): - _image = to_grayscale(image[_slice], max_val=image.max(), min_val=image.min()) + for i, (image, _slice, scale, min_val, max_val) in enumerate( + zip(images, slices, scales, min_vals, max_vals) + ): + _image = to_grayscale(image[_slice], min_val=min_val, max_val=max_val) _image = cv.resize(_image, None, fx=scale, fy=scale) _image = cv.putText( - _image, str(_slice + 1), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 1, COLOR_WHITE, 3 + _image, + str(_slice + 1), + (0, 30), + cv.FONT_HERSHEY_SIMPLEX, + 1, + COLOR_WHITE, + 3, ) _images.append(_image) slices[i] = (_slice + 1) % image.shape[0] - image = join_images(_images, space) + image = join_images(_images, space, vertical=args.vertical) cv.imshow(args.window_name, image) key = cv.waitKey(current_timeout)