from dataclasses import dataclass
import os
from typing import Dict, Optional
import sys

import torch
from torch import Tensor

from mu_map.training.loss import WeightedLoss
from mu_map.logging import get_logger

# Establish convention for real and fake labels during training
LABEL_REAL = 1.0
LABEL_FAKE = 0.0


@dataclass
class TrainingParams:
    model: torch.nn.Module
    optimizer: torch.optim.Optimizer
    lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler]


class cGANTraining:
    def __init__(
        self,
        data_loaders: Dict[str, torch.utils.data.DataLoader],
        epochs: int,
        device: torch.device,
        snapshot_dir: str,
        snapshot_epoch: int,
        params_generator: torch.nn.Module,
        params_discriminator: torch.nn.Module,
        loss_func_dist: WeightedLoss,
        weight_criterion_dist: float,
        weight_criterion_adv: float,
        logger=None,
    ):
        self.data_loaders = data_loaders
        self.epochs = epochs
        self.device = device

        self.snapshot_dir = snapshot_dir
        self.snapshot_epoch = snapshot_epoch
        self.logger = logger if logger is not None else get_logger()

        self.params_g = params_generator
        self.params_d = params_discriminator

        self.weight_criterion_dist = weight_criterion_dist
        self.weight_criterion_adv = weight_criterion_adv

        self.criterion_adv = torch.nn.MSELoss(reduction="mean")
        self.criterion_dist = loss_func_dist

    def run(self):
        loss_val_min = sys.maxsize
        for epoch in range(1, self.epochs + 1):
            str_epoch = f"{str(epoch):>{len(str(self.epochs))}}"
            self.logger.debug(f"Run epoch {str_epoch}/{self.epochs} ...")

            self._train_epoch()
            loss_train = self._eval_epoch("train")
            self.logger.info(
                f"Epoch {str_epoch}/{self.epochs} - Loss train: {loss_train:.6f}"
            )
            loss_val = self._eval_epoch("validation")
            self.logger.info(
                f"Epoch {str_epoch}/{self.epochs} - Loss validation: {loss_val:.6f}"
            )

            if loss_val < loss_val_min:
                loss_val_min = loss_val
                self.logger.info(
                    f"Store snapshot val_min of epoch {str_epoch} with minimal validation loss"
                )
                self.store_snapshot("val_min")
            if epoch % self.snapshot_epoch == 0:
                self._store_snapshot(epoch)

            if self.params_d.lr_scheduler is not None:
                self.logger.debug("Step LR scheduler of discriminator")
                self.params_d.lr_scheduler.step()
            if self.params_g.lr_scheduler is not None:
                self.logger.debug("Step LR scheduler of generator")
                self.params_g.lr_scheduler.step()
        return loss_val_min

    def _train_epoch(self):
        # setup training mode
        torch.set_grad_enabled(True)
        self.params_d.model.train()
        self.params_g.model.train()

        data_loader = self.data_loaders["train"]
        for i, (recons, mu_maps_real) in enumerate(data_loader):
            print(
                f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
                end="\r",
            )
            batch_size = recons.shape[0]

            recons = recons.to(self.device)
            mu_maps_real = mu_maps_real.to(self.device)

            self.params_d.optimizer.zero_grad()
            self.params_g.optimizer.zero_grad()

            # compute fake mu maps with generator
            mu_maps_fake = self.params_g.model(recons)

            # compute discriminator loss for fake mu maps
            inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
            outputs_d_fake = self.params_d.model(
                inputs_d_fake.detach()
            )  # note the detach, so that gradients are not computed for the generator
            labels_fake = torch.full(
                (outputs_d_fake.shape), LABEL_FAKE, device=self.device
            )
            loss_d_fake = self.criterion_adv(outputs_d_fake, labels_fake)

            # compute discriminator loss for real mu maps
            inputs_d_real = torch.cat((recons, mu_maps_real), dim=1)
            outputs_d_real = self.params_d.model(
                inputs_d_real
            )  # note the detach, so that gradients are not computed for the generator
            labels_real = torch.full(
                (outputs_d_fake.shape), LABEL_REAL, device=self.device
            )
            loss_d_real = self.criterion_adv(outputs_d_real, labels_real)

            # update discriminator
            loss_d = 0.5 * (loss_d_fake + loss_d_real)
            loss_d.backward()  # compute gradients
            self.params_d.optimizer.step()

            # update generator
            inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
            outputs_d_fake = self.params_d.model(inputs_d_fake)
            loss_g_adv = self.criterion_adv(outputs_d_fake, labels_real)
            loss_g_dist = self.criterion_dist(mu_maps_fake, mu_maps_real)
            loss_g = (
                self.weight_criterion_adv * loss_g_adv
                + self.weight_criterion_dist * loss_g_dist
            )
            loss_g.backward()
            self.params_g.optimizer.step()

    def _eval_epoch(self, split_name):
        # setup evaluation mode
        torch.set_grad_enabled(False)
        self.params_d.model = self.params_d.model.eval()
        self.params_g.model = self.params_g.model.eval()
        data_loader = self.data_loaders[split_name]

        loss = 0.0
        updates = 0
        for i, (recons, mu_maps) in enumerate(data_loader):
            print(
                f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
                end="\r",
            )
            recons = recons.to(self.device)
            mu_maps = mu_maps.to(self.device)

            outputs = self.params_g.model(recons)

            loss += torch.nn.functional.l1_loss(outputs, mu_maps)
            updates += 1
        return loss / updates

    def _store_snapshot(self, epoch):
        prefix = f"{epoch:0{len(str(self.epochs))}d}"
        self.store_snapshot(prefix)

    def store_snapshot(self, prefix: str):
        snapshot_file_d = os.path.join(self.snapshot_dir, f"{prefix}_discriminator.pth")
        snapshot_file_g = os.path.join(self.snapshot_dir, f"{prefix}_generator.pth")
        self.logger.debug(f"Store snapshots at {snapshot_file_d} and {snapshot_file_g}")
        torch.save(self.params_d.model.state_dict(), snapshot_file_d)
        torch.save(self.params_g.model.state_dict(), snapshot_file_g)


if __name__ == "__main__":
    import argparse
    import random
    import sys

    import numpy as np

    from mu_map.dataset.patches import MuMapPatchDataset
    from mu_map.dataset.normalization import (
        MeanNormTransform,
        MaxNormTransform,
        GaussianNormTransform,
    )
    from mu_map.dataset.transform import PadCropTranform, SequenceTransform
    from mu_map.logging import add_logging_args, get_logger_by_args
    from mu_map.models.unet import UNet
    from mu_map.models.discriminator import Discriminator, PatchDiscriminator

    parser = argparse.ArgumentParser(
        description="Train a UNet model to predict μ-maps from reconstructed scatter images",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    # Model Args
    parser.add_argument(
        "--features",
        type=int,
        nargs="+",
        default=[64, 128, 256, 512],
        help="number of features in the layers of the UNet structure",
    )

    # Dataset Args
    parser.add_argument(
        "--dataset_dir",
        type=str,
        default="data/second/",
        help="the directory where the dataset for training is found",
    )
    parser.add_argument(
        "--input_norm",
        type=str,
        choices=["none", "mean", "max", "gaussian"],
        default="mean",
        help="type of normalization applied to the reconstructions",
    )
    parser.add_argument(
        "--patch_size",
        type=int,
        default=32,
        help="the size of patches extracted for each reconstruction",
    )
    parser.add_argument(
        "--patch_offset",
        type=int,
        default=20,
        help="offset to ignore the border of the image",
    )
    parser.add_argument(
        "--number_of_patches",
        type=int,
        default=100,
        help="number of patches extracted for each image",
    )
    parser.add_argument(
        "--no_shuffle",
        action="store_true",
        help="do not shuffle patches in the dataset",
    )
    parser.add_argument(
        "--scatter_correction",
        action="store_true",
        help="use the scatter corrected reconstructions in the dataset",
    )

    # Training Args
    parser.add_argument(
        "--seed",
        type=int,
        help="seed used for random number generation",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=64,
        help="the batch size used for training",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="train_data",
        help="directory in which results (snapshots and logs) of this training are saved",
    )
    parser.add_argument(
        "--epochs",
        type=int,
        default=100,
        help="the number of epochs for which the model is trained",
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cuda:0" if torch.cuda.is_available() else "cpu",
        help="the device (cpu or gpu) with which the training is performed",
    )
    parser.add_argument(
        "--dist_loss_func",
        type=str,
        default="l1",
        help="define the loss function used as the distance loss of the generator , e.g. 0.75*l2+0.25*gdl",
    )
    parser.add_argument(
        "--dist_loss_weight",
        type=float,
        default=100.0,
        help="weight for the distance loss of the generator",
    )
    parser.add_argument(
        "--adv_loss_weight",
        type=float,
        default=1.0,
        help="weight for the Adversarial-Loss of the generator",
    )
    parser.add_argument(
        "--lr", type=float, default=0.001, help="the initial learning rate for training"
    )
    parser.add_argument(
        "--decay_lr",
        action="store_true",
        help="decay the learning rate",
    )
    parser.add_argument(
        "--lr_decay_factor",
        type=float,
        default=0.99,
        help="decay factor for the learning rate",
    )
    parser.add_argument(
        "--lr_decay_epoch",
        type=int,
        default=1,
        help="frequency in epochs at which the learning rate is decayed",
    )
    parser.add_argument(
        "--snapshot_dir",
        type=str,
        default="snapshots",
        help="directory under --output_dir where snapshots are stored",
    )
    parser.add_argument(
        "--snapshot_epoch",
        type=int,
        default=10,
        help="frequency in epochs at which snapshots are stored",
    )
    parser.add_argument(
        "--generator_weights",
        type=str,
        help="use pre-trained weights for the generator",
    )

    # Logging Args
    add_logging_args(parser, defaults={"--logfile": "train.log"})

    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)

    args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir)
    if not os.path.exists(args.snapshot_dir):
        os.mkdir(args.snapshot_dir)
    else:
        if len(os.listdir(args.snapshot_dir)) > 0:
            print(
                f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!"
            )
            print(f"           Exit so that data is not accidentally overwritten!")
            exit(1)

    args.logfile = os.path.join(args.output_dir, args.logfile)

    device = torch.device(args.device)
    logger = get_logger_by_args(args)
    logger.info(args)

    args.seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
    logger.info(f"Seed: {args.seed}")
    random.seed(args.seed)
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

    transform_normalization = None
    if args.input_norm == "mean":
        transform_normalization = MeanNormTransform()
    elif args.input_norm == "max":
        transform_normalization = MaxNormTransform()
    elif args.input_norm == "gaussian":
        transform_normalization = GaussianNormTransform()
    transform_normalization = SequenceTransform(
        [transform_normalization, PadCropTranform(dim=3, size=32)]
    )

    data_loaders = {}
    for split in ["train", "validation"]:
        dataset = MuMapPatchDataset(
            args.dataset_dir,
            patches_per_image=args.number_of_patches,
            patch_size=args.patch_size,
            patch_offset=args.patch_offset,
            shuffle=not args.no_shuffle,
            split_name=split,
            transform_normalization=transform_normalization,
            scatter_correction=args.scatter_correction,
            logger=logger,
        )
        data_loader = torch.utils.data.DataLoader(
            dataset=dataset,
            batch_size=args.batch_size,
            shuffle=True,
            pin_memory=True,
            num_workers=1,
        )
        data_loaders[split] = data_loader

    discriminator = Discriminator(in_channels=2, input_size=args.patch_size)
    discriminator = discriminator.to(device)
    optimizer = torch.optim.Adam(
        discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999)
    )
    lr_scheduler = (
        torch.optim.lr_scheduler.StepLR(
            optimizer, step_size=args.lr_decay_epoch, gamma=args.lr_decay_factor
        )
        if args.decay_lr
        else None
    )
    params_d = TrainingParams(
        model=discriminator, optimizer=optimizer, lr_scheduler=lr_scheduler
    )

    generator = UNet(in_channels=1, features=args.features)
    generator = generator.to(device)
    if args.generator_weights:
        logger.debug(f"Load generator weights from {args.generator_weights}")
        generator.load_state_dict(
            torch.load(args.generator_weights, map_location=device)
        )
    optimizer = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(0.5, 0.999))
    lr_scheduler = (
        torch.optim.lr_scheduler.StepLR(
            optimizer, step_size=args.lr_decay_factor, gamma=args.lr_decay_factor
        )
        if args.decay_lr
        else None
    )
    params_g = TrainingParams(
        model=generator, optimizer=optimizer, lr_scheduler=lr_scheduler
    )

    dist_criterion = WeightedLoss.from_str(args.dist_loss_func)
    logger.debug(f"Use distance criterion: {dist_criterion}")

    training = cGANTraining(
        data_loaders=data_loaders,
        epochs=args.epochs,
        device=device,
        snapshot_dir=args.snapshot_dir,
        snapshot_epoch=args.snapshot_epoch,
        logger=logger,
        params_generator=params_g,
        params_discriminator=params_d,
        loss_func_dist=dist_criterion,
        weight_criterion_dist=args.dist_loss_weight,
        weight_criterion_adv=args.adv_loss_weight,
    )
    training.run()