from logging import Logger from typing import Optional import torch from mu_map.dataset.default import MuMapDataset from mu_map.training.lib import TrainingParams, AbstractTraining from mu_map.training.loss import WeightedLoss class DistanceTraining(AbstractTraining): def __init__( self, epochs: int, dataset: MuMapDataset, batch_size: int, device: torch.device, snapshot_dir: str, snapshot_epoch: int, params: TrainingParams, loss_func: WeightedLoss, logger: Optional[Logger] = None, ): super().__init__(epochs, dataset, batch_size, device, snapshot_dir, snapshot_epoch, logger) self.training_params.append(params) self.loss_func = loss_func self.model = params.model def _train_batch(self, recons: torch.Tensor, mu_maps: torch.Tensor) -> float: mu_maps_predicted = self.model(recons) loss = self.loss_func(mu_maps_predicted, mu_maps) loss.backward() return loss.item() def _eval_batch(self, recons: torch.Tensor, mu_maps: torch.Tensor) -> float: mu_maps_predicted = self.model(recons) loss = torch.nn.functional.l1_loss(mu_maps_predicted, mu_maps) return loss.item() if __name__ == "__main__": import argparse import os import random import sys import numpy as np from mu_map.dataset.patches import MuMapPatchDataset from mu_map.dataset.normalization import ( MeanNormTransform, MaxNormTransform, GaussianNormTransform, ) from mu_map.logging import add_logging_args, get_logger_by_args from mu_map.models.unet import UNet parser = argparse.ArgumentParser( description="Train a UNet model to predict μ-maps from reconstructed scatter images", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) # Model Args parser.add_argument( "--features", type=int, nargs="+", default=[64, 128, 256, 512], help="number of features in the layers of the UNet structure", ) # Dataset Args parser.add_argument( "--dataset_dir", type=str, default="data/second/", help="the directory where the dataset for training is found", ) parser.add_argument( "--input_norm", type=str, choices=["none", "mean", "max", "gaussian"], default="mean", help="type of normalization applied to the reconstructions", ) parser.add_argument( "--patch_size", type=int, default=32, help="the size of patches extracted for each reconstruction", ) parser.add_argument( "--patch_offset", type=int, default=20, help="offset to ignore the border of the image", ) parser.add_argument( "--number_of_patches", type=int, default=100, help="number of patches extracted for each image", ) parser.add_argument( "--no_shuffle", action="store_true", help="do not shuffle patches in the dataset", ) # Training Args parser.add_argument( "--seed", type=int, help="seed used for random number generation", ) parser.add_argument( "--batch_size", type=int, default=64, help="the batch size used for training", ) parser.add_argument( "--output_dir", type=str, default="train_data", help="directory in which results (snapshots and logs) of this training are saved", ) parser.add_argument( "--epochs", type=int, default=100, help="the number of epochs for which the model is trained", ) parser.add_argument( "--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="the device (cpu or gpu) with which the training is performed", ) parser.add_argument( "--loss_func", type=str, default="l1", help="define the loss function used for training, e.g. 0.75*l1+0.25*gdl", ) parser.add_argument( "--decay_lr", action="store_true", help="decay the learning rate", ) parser.add_argument( "--lr", type=float, default=0.001, help="the initial learning rate for training" ) parser.add_argument( "--lr_decay_factor", type=float, default=0.99, help="decay factor for the learning rate", ) parser.add_argument( "--lr_decay_epoch", type=int, default=1, help="frequency in epochs at which the learning rate is decayed", ) parser.add_argument( "--snapshot_dir", type=str, default="snapshots", help="directory under --output_dir where snapshots are stored", ) parser.add_argument( "--snapshot_epoch", type=int, default=10, help="frequency in epochs at which snapshots are stored", ) # Logging Args add_logging_args(parser, defaults={"--logfile": "train.log"}) args = parser.parse_args() if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir) if not os.path.exists(args.snapshot_dir): os.mkdir(args.snapshot_dir) else: if len(os.listdir(args.snapshot_dir)) > 0: print( f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!" ) print(f" Exit so that data is not accidentally overwritten!") exit(1) args.logfile = os.path.join(args.output_dir, args.logfile) device = torch.device(args.device) logger = get_logger_by_args(args) logger.info(args) args.seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1) logger.info(f"Seed: {args.seed}") random.seed(args.seed) torch.manual_seed(args.seed) np.random.seed(args.seed) transform_normalization = None if args.input_norm == "mean": transform_normalization = MeanNormTransform() elif args.input_norm == "max": transform_normalization = MaxNormTransform() elif args.input_norm == "gaussian": transform_normalization = GaussianNormTransform() dataset = MuMapPatchDataset( args.dataset_dir, patches_per_image=args.number_of_patches, patch_size=args.patch_size, patch_offset=args.patch_offset, shuffle=not args.no_shuffle, transform_normalization=transform_normalization, logger=logger, ) model = UNet(in_channels=1, features=args.features).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.5, 0.999)) lr_scheduler = ( torch.optim.lr_scheduler.StepLR( optimizer, step_size=args.lr_decay_factor, gamma=args.lr_decay_factor ) if args.decay_lr else None ) params = TrainingParams(name="Model", model=model, optimizer=optimizer, lr_scheduler=lr_scheduler) criterion = WeightedLoss.from_str(args.loss_func) training = DistanceTraining( epochs=args.epochs, dataset=dataset, batch_size=args.batch_size, device=device, snapshot_dir=args.snapshot_dir, snapshot_epoch=args.snapshot_epoch, params=params, loss_func=criterion, logger=logger, ) training.run()