import torch import torch.nn as nn class Conv(nn.Sequential): def __init__(self, in_channels, out_channels): super().__init__() self.append( nn.Conv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding="same", ) ) self.append(nn.BatchNorm3d(num_features=out_channels)) self.append(nn.ReLU(inplace=True)) class Discriminator(nn.Module): def __init__(self, in_channels=1): super().__init__() self.conv = nn.Sequential( Conv(in_channels=in_channels, out_channels=32), nn.MaxPool3d(kernel_size=2, stride=2), Conv(in_channels=32, out_channels=64), nn.MaxPool3d(kernel_size=2, stride=2), Conv(in_channels=64, out_channels=128), nn.MaxPool3d(kernel_size=2, stride=2), ) self.fully_connected = nn.Sequential( nn.Linear(in_features=128 * 2 ** 3, out_features=512), nn.ReLU(inplace=True), nn.Linear(in_features=512, out_features=128), nn.ReLU(inplace=True), nn.Linear(in_features=128, out_features=1), ) def forward(self, x): x = self.conv(x) x = torch.flatten(x, 1) x = self.fully_connected(x) return x if __name__ == "__main__": net = Discriminator() print(net) _inputs = torch.rand((1, 1, 16, 16, 16)) _outputs = net(_inputs) print(f"Transform {_inputs.shape} to {_outputs.shape}")