Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • Gerald_H/python-programming
  • franziska.niemeyer/python-programming
  • ggp_python/python-programming
3 results
Show changes
Showing
with 0 additions and 750 deletions
File suppressed by a .gitattributes entry or the file's encoding is unsupported.
Name Primer1 Primer2
M01 22 23
M02 26 27
M03 30 31
M05 42 43
M06 46 47
M07 NT12 NT13
M09 130 131
M11 NT10 NT11
M12 206 207
M13 03_NT04 03_NT05
M14 03_NT22 03_NT23
M15 03_NT26 03_NT27
M16 03_NT56 03_NT57
M20 424 425
M21 426 427
M22 430 431
M23 NT18 NT19
M24 NT34 NT35
M25 504 505
M26 606 607
M27 622 623
M29 628 629
M30 704 705
M31 708 709
M32 710 711
M33 712 713
M34 800 801
M36 NT16 NT17
M37 900 901
M38 1000 1001
M39 1002 1003
M41 1020 1021
M42 1100 1101
M44 1122 1123
M45 1132 1133
M46 1204 1205
M47 1208 1209
M48 1210 1211
M49 NT06 NT07
M50 1300 1301
M51 1400 1401
M52 1402 1403
M53 1404 1405
M55 1408 1409
M56 1410 1411
M57 1412 1413
M60 1602 1603
M62 1702 1703
M64 1706 1707
M66 1800 1801
M67 1902 1903
M68 2000 2001
M69 2002 2003
M70 2004 2005
M72 2300 2301
M74 2402 2403
M77 822 823
M78 2334 2335
M81 2630 2633
M81B 2630 2631
M82 1502 1503
M84 114a 114b
M90 21C1 21C2
M91 22C1 22C2
\ No newline at end of file
Name Sequence
0022 gcagatgttcgttcaaag
0023 aggctggattcccaaaac
0026 gaagctaagaccatacctg
0027 tggaaacaagagcaatgatc
0030 atctgtgcaatgttgtgg
0031 tctgcatgggagagtagg
00x1 aagttataatgctgatcattggg
0042 ctcttactacactgctgtc
0043 gagaccacatagacatgtg
00x3 ttatctgctaaaatggttgc
0046 agattagggttctcgggtc
0047 cgttactataaaaggcgaatac
00x4 tgcgtaagaactaagagtg
NT12 AACCCGAGCATTAATTCGTGC
NT13 CTCTTCCTCAAGTTGTGGCTG
00x6 ggtgccggtgacgaaaag
0130 tggacctaaagcatggtac
0131 gaacacttttgaaagacgag
01x1 ctacaccggaaaagctagtc00x1
NT10 CACGTGGCTTGGACTAATTGG
NT11 CCAACACAGCCTTCACGTAAAG
02x4 aggattccacattaggactccac
0206 TTTCTTGTAGCCTCCTCAACC
0207 TCATTCTCATTTTCCTGAAACG
02x2 acgtcaagctcgatgcaac
NT04 TTATCCTATATTTCGAATCCGATTG
NT05 AACTAAGACTGTCTTTTGGTAAAAT
03x1 gcagacttctcgcaaacggcagacttctcgcaaacggatcccaactcgggactggaag
NT22 CGCACCGACAATTCTCTAGCC
NT23 CTGCTTTTCCCACGTCCTCTC
03x3 gatcccaactcgggactggaag
NT26 AAGGGTGTTTGGAGGGAAGTC
NT27 GTAGCAGCTTTGTAACACCGG
03x4 gatggatcattttgatggagaaacagg
NT56 GAGACGCAGGTATTTATAAACTTAT
NT57 AATCAAACTTGTGAATGAACTAGTA
03x6 actttggtaaactacgagagc
0300 AAATCTAATGTTATTGAACAAGTG
0301 CATCCAACATTACCCCAAACC
0304 ATACAAGATTCTACCTCGTCG
0305 ATCCTAAAATCGCAGCTCTTC
03x7 tctaacgactaaagacattccac
0424 ctaggcaaaatagccaaac
0425 tcactagcgaaagctcag
0426 atggatcgacaacgatgg
0427 tggtcatcccaattcaac
0430 ttgtggattctctgttatcc
0431 cggtaaattaaagcgggac
NT18 ACACAGAAAACTTCCCCAAGTC
NT19 TGTTTCTGCTTCGAGACGATC
NT34 GGATTCAAACATGTCCCGTACC
NT35 TTGTCTTCCTCACCAAACCCC
0504 AGTGGTGGAATCTACTTACGG
0505 GAAAGATTACCTTCAAGGGTG
05x1 tgatggaccagagttttgg
0606 GTTTGTATAGTGCCTTAGTGG
0607 CCACTAATGCTTGATACATCC
N304 attcactatcgttattacacaagttacctg
N305 tgtgacgaatgatgcaaaacgag
0622 tgcttgctacatgacttttg
0623 ccgaattggtaaaggacc
0628 aaagatgccacacaaacac
0629 tgctgacttccccatttac
06x2 gattcgaatgatagtaaaatgctg
0704 TGAGTGGGGGTAATTATGTTC
0705 ATCCGTTTCACATTTTGGTCG
0708 TGTGCTAGATTACGCTACATC
0709 CCTTCACCAGAAGATTCTTAC
0710 CTGAGTCAACCAGATTTGGTC
0711 CAATGTTTTCAAGCCCGATTC
0712 AAGTACTGTGCATACGTCATC
0713 ACATAAGCAGGTCTTAATCCC
0800 GTGGTGTTTGCCTGTTATGAG
0801 TTGAGGTGTATTTTGCATGTTC
08x1 tggacacctacatgtgag
0820 aggatgaggagtatacagag
0821 tggtaagtattcccgcttac
08x2 tcattacccaaacggtgc
NT16 GCTCATTTGTGTGACCCAAATG
NT17 ATATTGTTGGAGCGCTTGTGAC
0900 TAACAATCACTCACAATACATAG
0901 TCCGATTTTGGTTCAAGATGG
09x1 agcattacattatgattttaaacg
1000 TGAACTTGCGTCTTGTTCTTC
1001 TCATGGTTAAGGGATCTCTGC
1002 TTTGGTACTAGGCATTCTTGC
1003 AGATTGATACCATGAGCATGG
1020 gatgctggtctactccag
1021 tgaatgtaaacccaagtcg
10x1 acaggccctaagtatcg
1100 ACCTCTCGTTTGCTAATCCTG
1101 TTGCATCATTCTCCTGTGGTG
11x2 atggaattgcctccaatgc
1122 taaccattccagcctttc
1123 cttgttcagagagcaagc
1132 tgaagcacaaataagtcac
1133 accaaatattttcaaagttgc
1204 AGCTACTAAAGACCAATGCTC
1205 TTCCCCATTACCAATGATTCG
1208 GTCACTTTCACTCTTTCAGAG
1209 ACTTAACCGCAGCATCAATAG
1210 TGAATGTTGAATAGAGGCGAC
1211 ACTTACCAACCATAGCCATAG
NT06 TCATATACTCCATAAACTATCTCGT
NT07 TTGTAAGGGTATGAAAATTCCATTT
13x1 ccgtgggtacctataatcc
1300 TTCTCACCAAATAAGAATAGATG
1301 CGAAATTACCCTCCATGACTC
1400 TGGTGCAGGTGAGATATATTC
1401 GATACGAATTTGACCAAATTATG
14x1 gaacagcccttcacctg
1402 TCCCTATGTTCATAACTCGAC
1403 TCGAAGATGGCTTTGACCATC
1404 ATTAGCCTTCATGTTTCCTCC
1405 TATCTTCATGGCTTCTCACTC
1408 GAGATGTTTATGGAAAGCAGG
1409 CCTAAATAGTTGACTTCAGCC
1410 GGAATTGTAATCCTTCACCAG
1411 ACACGTCATGTACTAGTGTCC
1412 CATTTGCTACGATGGCTAGTC
1413 GATCAGAAGTCACGATCTTTG
1602 AACCAAGTAAAACTCAGCCTC
1603 AAGCTAATCGCTGAGTTATTAC
1702 TCGACCAGTATACTCGATCAC
1703 AGATCTCAACAGATCACTCTG
1706 ACATAATCAACACCGACCTCC
1707 AGGAAGTTGCTTGGTGATGTG
1800 TATTGATCAAGTGCAGCCATG
1801 TCAGATGGATGTACCCATTTG
1902 TGTTGTGATTTTGGGCCTGAG
1903 GAAAGGCCAATAGGCTAATGG
2000 TTTGCTAGATTTGCCTTCTCG
2001 TAGATATGCATCCAGAACAGG
2002 TTCGAGTAACCCTGTTACATC
2003 TCGTTCTTACTCTCAGCAGTG
2004 ATCGTTTTAACCACCGGTTTC
2005 ATTCAGACATAACTGGGGCAG
2300 TTGGTTATCAGTGGAACTGTG
2301 GCATCCGTTCAAGGAATTAAG
2402 ACTTCAACAGGGAGATGACAG
2403 GCACATAACAAGATGTGATCG
0822 tctgagtgttggggatag
0823 gaccgtcactaacagtagg
2334 TTGCACCTTCAAAGGCTG
2335 TGTGTACATGGCCTGTCG
2336 CACTCACCTCATCTTGGGAC
1730 CGGTACTATCTAATGAAGACAAAC
1731 CGACATCTAACAGAAATCATAAC
1732 TACTACCTAATTTACGGGAAC
1733 GACATCTAACAGAAATCATAACG
2030 CTAACCACTTATGTTCTCTTGC
2034 GACGAACATCGTCCTCTAG
2032 CTAACCACTTCTGTTCTCTTAC
2035 GGACGAACATCATCCTGTAG
2630 GGTTCTAGTTGTTACTACAAGA
2631 TCGTTGCATTTTAGTCGG
2633 TCGTTGCATTTTAGTCCG
1502 GAGCAGATACCAAAGCATTTG
1503 TATAAAGGGAGTCTCCACAGG
114a TTCACTAAGTATAGCAGCAAGG
114b CGAACCTTTTCTCCTAGCCTTC
114c GGACAGACACCAAGACAATGC
21C1 GTCGTAACATTTGGCGACTACG
21C2 AGACTGCCCGAATCTTTGGAAT
21N1 GATCAACACATGCTCCCTACCA
21N2 ATCAGTTACGAAACGACGGACA
22C1 TCCTCCACCTAAGCCATCACTA
22C2 AGAAGACGTCGTAGCTAGAGGA
22N9 TATCGGTGATCATACGGCTTGG
22N0 TGACAGTGAACTCCTGAATCCG
Project2: in silico- PCR
Primer aus einer Datei einlesen und in Referenzseq. suchen, um die PCR-Produktgröße zu bestimmen. Auf Fehlbindungen in anderen Regionen prüfen. Primer formatiert in multiplen FASTA-Dateien ausgeben mit Tm-Wert Berechnungen.
%% Cell type:markdown id: tags:
# Python course 2021 - Exercises B
%% Cell type:markdown id: tags:
## Part1 - control structures
%% Cell type:markdown id: tags:
---
1.1) Write a script for guessing numbers!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.2) Add tips (smaller/larger) during the guessing process!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
## Part2 - loops
%% Cell type:markdown id: tags:
---
2.1) Write a function counting to 100 and printing all numbers which can be divided by 4 without any residue!
* Info: 10%2 #modulo division in Python
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
2.2) Write a function counting down from 1000 to 0 and printing all numbers!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
2.3) Generate a list of species names! Write a function printing all species names starting with "E"!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
2.4) Expand this function to limit the printing to species names which are additionally shorter than 10 characters!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
2.5) Expand this function to limit the printing to species names which are additionally ending with "a".
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
## Part3 - range & enumerate
%% Cell type:markdown id: tags:
---
3.1) Write a script to print 50x "here" and the current value of the control variable!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
3.2) Write a script to walk through the species list and to print the character from the species where the index corresponds to the current control variable value!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
# Python course 2021 - Exercises C
%% Cell type:markdown id: tags:
## Part1 - file handling
%% Cell type:markdown id: tags:
---
1.1) Count number of sequences (number of headers) in AtCol0_Exons.fasta!
%% Cell type:code id: tags:
```
from google.colab import drive
drive.mount('/content/drive')
```
%% Output
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
%% Cell type:code id: tags:
```
datei = open("/content/drive/MyDrive/Python_course_2021_data/AtCol0_Exons.fasta", "r")
lines = datei.readlines()
datei.close()
```
%% Cell type:markdown id: tags:
---
1.2) Count number of sequence lines!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.3) Count number of characters in document! (How many per line?)
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.4) How long are all contained sequences combined?
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.5) Calculate the average sequence length in this file!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
# Python course 2021 - Exercises D
%% Cell type:markdown id: tags:
## Part1 - writing files
%% Cell type:markdown id: tags:
---
1.1) Read the file AtCol0_Exons.fasta and write all headers (starting with '>') into a new file!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.2) Read the file AtCol0_Exons.fasta and write the following:
* Line if it is a header
* Length of line if it is a sequence line
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.3) Calculate the number of sequences, the cumulative length and the average length in a new file! Are they matching the values of the original file?
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.4) Write sequences into a new file if their length is a multiple of 10!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
## Part2 - characters
%% Cell type:markdown id: tags:
---
2.1) Read the file AtCol0_Exons.fasta and write the following:
* Only Arabidopsis Gene Identifier (e.g. AT1G01010)
* Gene Identifier, exon name, exon length (tab-delimited)
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
# Python course 2021 - Exercises G
%% Cell type:markdown id: tags:
## Part1 - easygui
%% Cell type:markdown id: tags:
---
1.1) Write a script to handle input of primer names and sequences! All information should be saved in a multiple FASTA file.
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.2) Write a script to return a matching primer sequence from a FASTA file based on a given primer name.
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
1.3) Write a script to combine both functionalities: return primer sequence, if name is already present OR generate new entry if primer is novel.
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
# Python course 2021 - Exercises H
%% Cell type:markdown id: tags:
## Operon structure plot
%% Cell type:markdown id: tags:
---
Construct a figure to illustrate the order and orientation of genes in the gum gene cluster in *Xanthomonas campestris* pv. campestris!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
# Python course 2021 - Exercises I
%% Cell type:markdown id: tags:
## analyze the unknown data
%% Cell type:markdown id: tags:
---
Construct a suitable visualization!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
Analyze distribution and trends!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
Apply statistical test to investigate difference!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
# Python course 2021 - Exercises J
%% Cell type:markdown id: tags:
## construct heatmap
%% Cell type:markdown id: tags:
---
Read data table and construct heatmap for the gene expression!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
---
Display functional gene annotation!
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
# Python course 2022 - Repetition 1
%% Cell type:markdown id: tags:
These exercises are meant for repeating most of what you have learned in the course this far. For most of the tasks, you already have partial solutions from the other exercises. We encourage you to make use of those to review them again and maybe spot room for improvement here and there.
%% Cell type:markdown id: tags:
1.1) Print the current time.
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
1.2) Count the number of genes (not exons) in the AtCol0_Exons.fasta file. How many genes are single-exons genes?
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
1.3) How many of the genes are located on the forward strand? How many are located on the reverse strand?
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
1.4) Count the number of genes per chromosome and plot the results.
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
1.5) Count the number of genes located on the chondrom and plastom.
%% Cell type:code id: tags:
```
```
%% Cell type:markdown id: tags:
1.6) Which of the genes may potentially include the amino acid motive "WIP"?
%% Cell type:code id: tags:
```
```
File deleted