Newer
Older
import java.util.regex.Pattern
include {post_csv_to_json_api as post_species_csv_to_json_api; post_csv_to_json_api as post_abr_csv_to_json_api;
score as score_species; score as score_abr; put_file as upload_fast5; put_file_base as upload_fsummary} from './lib.nf'
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
Map reads against local species database
*/
process map_species {
// Only one fork so we _really_ don't run out of memory
maxForks 1
container 'quay.io/biocontainers/minimap2:2.26--he4a0461_1'
input:
path species_fasta
tuple val(prefix), path(reads_fastq)
output:
tuple path("${reads_fastq}_species_raw.paf"), val(prefix), emit: paf
script:
"""
minimap2 --secondary=no -x map-ont "${species_fasta}" "${reads_fastq}" > "${reads_fastq}_species_raw.paf"
"""
}
/*
Take minimap PAF result from map_species and discard matches with low quality
*/
process discard_low_quality_species_scores {
input:
tuple path(species_raw), val(prefix)
output:
tuple path ("${species_raw}_qc.csv"), val(prefix), emit: species_detected_qc
shell:
'''
# discard matches with a quality(PAF column 12) < 60 or length(11) less than 200,
# output the first 12 columns (PAF format) and add a column with mapping_percentage(10/11),
# reduce all spaces to a single one and convert them into ','
# finally sort by species_accession(col 6) and store as csv
awk '$12 > 59 && $12 < 255 && $11 > 199 {print $1,$2,$3,$4,$5,$6,$7,$8,$9,$10,$11,$12,$10/$11}' !{species_raw}\
| sort | sed "s/^\\s\\+//g" | tr ' ' ',' | sort --key=6 --field-separator=, > !{species_raw}_qc.csv
'''
}
/*
Map matched species sequence IDs to species names so they can be included in the result
*/
process lookup_species_names {
input:
tuple path(species_detected_qc), val(prefix)
path species_fasta
output:
path 'species_names.csv', emit: species_names
script:
"""
# TODO: this can probably be done more efficiently.. and also once and be permanently stored until the database changes..
grep '^>' ${species_fasta} > species_meta.txt
looked_up=''
while read line; do
id="\$(echo \${line} | awk -F, '{print \$6}')"
if [[ ! \${looked_up[*]} =~ \${id} ]];then
looked_up=(\${looked_up[@]} \${id})
grep \${id} species_meta.txt
fi;
done < "${species_detected_qc}" | uniq | tr -d '>' | sed "s/,/ -/g" | sed "s/^\\([A-Z,0-9,_.]*\\)\\s/\\1,/g" | sort > species_names.csv
"""
}
/*
Include species names in the table of detected species
*/
process join_species_names {
input:
path species_names
tuple path(species_detected_qc), val(prefix)
output:
tuple path("${species_detected_qc}_with_names.csv"), val(prefix), emit: species_detected
publishDir "${params.publishdir}/${prefix}/"
script:
"""
output_name="${species_detected_qc}_with_names.csv"
echo 'species_accession,query_id,query_length,query_start,query_end,strand,target_length,target_start,'\
'target_end,residue_matches,alignment_block_length,mapping_quality,match_percentage,species_name' > "\${output_name}"
join -1 6 -2 1 -t , "${species_detected_qc}" "${species_names}" >> "\${output_name}"
"""
}
/*
Map reads agains CARD database for antibiotic resistancies
*/
process detect_abr {
container 'quay.io/biocontainers/minimap2:2.26--he4a0461_1'
input:
path card_db
tuple val(prefix), path(reads_fastq)
output:
tuple path("${reads_fastq}_abr_raw.paf"), val(prefix), emit: abr_raw
script:
"""
minimap2 --secondary=no -x map-ont "${card_db}" "${reads_fastq}" > "${reads_fastq}_abr_raw.paf"
"""
}
/*
Take minimap2 PAF result from detect_abr and discard matches with low quality
*/
process discard_low_quality_abr_scores {
input:
tuple path(abr_raw_paf), val(prefix)
output:
tuple path("${abr_raw_paf}_qc.csv"), val(prefix), emit: abr_detected_raw
publishDir "${params.publishdir}/${prefix}"
script:
"""
# discard matches with a quality(PAF column 12) < 60 or length(11) less than 200,
# output the first 12 columns (PAF format) and add a column with mapping_percentage(10/11),
# reduce all spaces to a single one and convert them into ','
# finally sort by species_accession(col 6) and store as csv
echo 'query_id,query_length,query_start,query_end,strand,abr_card_id,target_length,target_start,target_end,'\
'residue_matches,alignment_block_length,mapping_quality,match_percentage' > "${abr_raw_paf}_qc.csv"
awk '\$12 > 59 && \$12 < 255 && \$11 > 199 {print \$1,\$2,\$3,\$4,\$5,\$6,\$7,\$8,\$9,\$10,\$11,\$12,\$10/\$11}' "${abr_raw_paf}"|\
sort | sed "s/^\\s\\+//g" | tr ' ' ',' >> "${abr_raw_paf}_qc.csv"
"""
}
// Create an unique project id from the name of the project directory, and the flowcell name and runIDs extracted from the filename of the given file
def get_project_id_from_fastx(somefile) {
// the project dir is the parent of the directory containing the fastx files
x = somefile.collect()*.toString()
proj_dir = x[x.findIndexOf{ it in params.minknowsubdirs} - 2]
// split the filename into parts, remove the second part (which is always 'fail' or 'pass') and the last part (which contains the file number and extension)
// afterwards join the remaining parts together and then with the name of the project dir to obtain the full project id
filename_parts = somefile.getBaseName().split(params.namedelimiter)
return [proj_dir].plus( filename_parts.minus(filename_parts[1, -1]).join(params.idjoiner) ).join(params.idjoiner)
// Get the same project id from the filename of a final_summary which minkow creates when the run is finished.
// BUT: If the sample uses barcoding, the barcode-id will be part of the id extracted from the fastx files (so they can be separated in the frontend),
// but not part of this id, because there is only one final_summary for the whole run. This has to be handled by the cloud-workflow.
def get_project_id_from_summary(somesummary) {
[somesummary.getParent()[-2]].plus(somesummary.getBaseName().split(params.namedelimiter)[2,3,4]).join(params.idjoiner)
def makeregexpattern(somedir, somepattern) {
// as a function because nextflow otherwise complains about an already used variable
return Pattern.compile( somedir + somepattern )
}
if (params.minknowdir.endsWith(File.separator)) {
minknowdir = params.minknowdir
} else {
minknowdir = params.minknowdir + File.separator

Dorian Lehmenkühler
committed
}

Dorian Lehmenkühler
committed
while (! file(minknowdir).exists()){
println "MinKnow output dir '${minknowdir}' does not exist yet. Checking again in 10 seconds. (Press Ctrl+C three times to cancel)"
sleep(10000)
println "Starting workflow with following parameters:"
println "Reads directory to watch: ${minknowdir + params.fastq_pattern_regex}"
println "FAST5_pass directory to watch: ${minknowdir + params.fast5_pattern_glob}"
println "Spezies database: $params.species"
println "CARD database: $params.card"
println "DB API server: $params.db_api_server"
println "Cloud API server: $params.cloud_api_server"
// Fasta file with genomes of all species relevant to us
species = channel.value(params.species)
// Creates a channel which emits every file newly cerated in the directory params.minknowdir/fastq_pass/
// The channel emits a tuple (with the .map operator) of the file and an unique project id
reads_glob = channel.watchPath(minknowdir+params.fastq_pattern_glob).map{ it -> [ get_project_id_from_fastx(it) , it]}
checkreadsPattern = makeregexpattern(minknowdir, params.fastq_pattern_regex)
reads = reads_glob.filter({ prj, read -> checkreadsPattern.matcher(read.toString()).matches()})
if( !(params.upload_fast5 in params.false_values) ) {
// Additionally watch the created FAST5 files to forward them to the cloud workflow and wait for the final summary
fast5files = channel.watchPath(minknowdir+params.fast5_pattern_glob).map{ it -> [it, get_project_id_from_fastx(it)]}
fsummary = channel.watchPath(minknowdir+params.summary_pattern_glob).map{ it -> [it, get_project_id_from_summary(it)]}
checkfsumPattern = makeregexpattern(minknowdir, params.summary_pattern_regex)
upload_fsummary(fsummary.filter({ sum, prj -> checkfsumPattern.matcher(sum.toString()).matches()}), params.cloud_api_server)
upload_fast5(fast5files,params.cloud_api_server, params.cloud_api_fast5_endpoint)
}
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
Species part
*/
// Map reads to species and discard mappings with low quality
map_species(species, reads) | discard_low_quality_species_scores
// Match the detected species ids with their common names
lookup_species_names(discard_low_quality_species_scores.out.species_detected_qc, species)
join_species_names(lookup_species_names.out.species_names, discard_low_quality_species_scores.out.species_detected_qc)
score_species(join_species_names.out.species_detected)
post_species_csv_to_json_api(score_species.out.scored_paflike, params.db_api_server, params.db_api_species_endpoint)
/*
ABR part
*/
// CARD database of ABR
card = channel.value(params.card)
// Detect antibiotic resistances
detect_abr(card, reads) | discard_low_quality_abr_scores
score_abr(discard_low_quality_abr_scores.out.abr_detected_raw)
post_abr_csv_to_json_api(score_abr.out.scored_paflike, params.db_api_server, params.db_api_abr_endpoint)
}
// vim: shiftwidth=4 smarttab expandtab autoindent