Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import os
import matplotlib.pyplot as plt
import numpy as np
import numpy.typing as npt
import torch
import torch.nn.functional as F
from PIL import Image
from torch import Tensor, nn
from torch.optim import Adam
from torch.utils.data import DataLoader, RandomSampler
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
from torchvision.utils import save_image, make_grid
device = torch.device("cuda")
dx = [+1, 0, -1, 0]
dy = [0, +1, 0, -1]
# perform depth first search for each candidate/unlabeled region
# reference: https://stackoverflow.com/questions/14465297/connected-component-labeling-implementation
def dfs(mask: npt.NDArray, x: int, y: int, labels: npt.NDArray, current_label: int):
n_rows, n_cols = mask.shape
if x < 0 or x == n_rows:
return
if y < 0 or y == n_cols:
return
if labels[x][y] or not mask[x][y]:
return # already labeled or not marked with 1 in image
# mark the current cell
labels[x][y] = current_label
# recursively mark the neighbors
for direction in range(4):
dfs(mask, x + dx[direction], y + dy[direction], labels, current_label)
def find_components(mask: npt.NDArray):
label = 0
n_rows, n_cols = mask.shape
labels = np.zeros(mask.shape, dtype=np.int8)
for i in range(n_rows):
for j in range(n_cols):
if not labels[i][j] and mask[i][j]:
label += 1
dfs(mask, i, j, labels, label)
return labels
# https://stackoverflow.com/questions/31400769/bounding-box-of-numpy-array
def bbox(img):
max_x, max_y = img.shape
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
rmin = rmin - 1 if rmin > 0 else rmin
cmin = cmin - 1 if cmin > 0 else cmin
rmax = rmax + 1 if rmax < max_x else rmax
cmax = cmax + 1 if cmax < max_y else cmax
return rmin, rmax, cmin, cmax
def extract_single_masks(labels: npt.NDArray):
masks = []
for l in range(labels.max() + 1):
mask = (labels == l).astype(np.int8)
rmin, rmax, cmin, cmax = bbox(mask)
masks.append(mask[rmin : rmax + 1, cmin : cmax + 1])
return masks
class VAE(nn.Module):
"""
https://github.com/pytorch/examples/blob/main/vae/main.py
"""
def __init__(self, bottleneck=2, image_dim=4096):
super(VAE, self).__init__()
self.bottleneck = bottleneck
self.image_dim = image_dim
self.prelim_encode = nn.Sequential(
nn.Flatten(), nn.Linear(image_dim, 400), nn.ReLU()
)
self.encode_mu = nn.Sequential(nn.Linear(400, bottleneck))
self.encode_logvar = nn.Sequential(nn.Linear(400, bottleneck))
self.decode = nn.Sequential(
nn.Linear(bottleneck, 400),
nn.ReLU(),
nn.Linear(400, image_dim),
nn.Sigmoid(),
)
def encode(self, x):
# h1 = F.relu(self.encode(x))
# return self.encode_mu(h1), self.encode_logvar(h1)
x = self.prelim_encode(x)
return self.encode_mu(x), self.encode_logvar(x)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 4096), reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def load_data():
transform = transforms.Compose(
[
transforms.Grayscale(),
transforms.Resize(
(64, 64), interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
]
)
trajectories = [
# "v3_subtle_iceberg_lettuce_nymph-6_203-2056",
"v3_absolute_grape_changeling-16_2277-4441",
"v3_content_squash_angel-3_16074-17640",
"v3_smooth_kale_loch_ness_monster-1_4439-6272",
"v3_cute_breadfruit_spirit-6_17090-19102",
"v3_key_nectarine_spirit-2_7081-9747",
"v3_subtle_iceberg_lettuce_nymph-6_3819-6049",
"v3_juvenile_apple_angel-30_396415-398113",
"v3_subtle_iceberg_lettuce_nymph-6_6100-8068",
]
datasets = []
for trj in trajectories:
datasets.append(
ImageFolder(
f"activation_vis/out/critic/masks/{trj}/0/4", transform=transform
)
)
dataset = torch.utils.data.ConcatDataset(datasets)
data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
return data_loader, dataset
def train(epoch, model, optimizer, data_loader, log_interval=40):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(data_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(data_loader.dataset),
100.0 * batch_idx / len(data_loader),
loss.item() / len(data),
)
)
print(
"====> Epoch: {} Average loss: {:.4f}".format(
epoch, train_loss / len(data_loader.dataset)
)
)
def test(epoch, models, dataset):
for model in models:
model.eval()
test_loss = [0 for _ in models]
test_batch_size = 32
sampler = RandomSampler(dataset, replacement=True, num_samples=64)
test_loader = DataLoader(dataset, batch_size=test_batch_size, sampler=sampler)
comp_data = None
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
for j, model in enumerate(models):
recon_batch, mu, logvar = model(data)
test_loss[j] += loss_function(recon_batch, data, mu, logvar).item()
if i == 0:
n = min(data.size(0), 20)
if comp_data == None:
comp_data = data[:n]
comp_data = torch.cat(
[comp_data, recon_batch.view(test_batch_size, 1, 64, 64)[:n]]
)
if i == 0:
if not os.path.exists("results"):
os.makedirs("results")
save_image(
comp_data.cpu(),
"results/reconstruction_" + str(epoch) + ".png",
nrow=min(data.size(0), 20),
)
for i, model in enumerate(models):
test_loss[i] /= len(test_loader.dataset)
print(f"====> Test set loss model {i}: {test_loss[i]:.4f}")
def test_mask(model: nn.Module, path: str, label: int, epsilon=0.4):
model.eval()
image = transforms.F.to_tensor(transforms.F.to_grayscale(Image.open(path)))
labels = find_components(image[0])
single_masks = extract_single_masks(labels)
mask = transforms.F.to_tensor(
transforms.F.resize(
transforms.F.to_pil_image((single_masks[label] * 255).astype(np.uint8)),
(64, 64),
)
)
with torch.no_grad():
mask = mask.to(device)
recon_x, _, _ = model(mask)
recon_bits = recon_x.view(64, 64).cpu().numpy() > epsilon
mask_bits = mask.cpu().numpy() > 0
TP = (mask_bits & recon_bits).sum()
FP = (recon_bits & ~mask_bits).sum()
FN = (mask_bits & ~recon_bits).sum()
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# loss = pixelwise_loss(recon_x, mask)
comp_data = torch.cat(
[mask[0].cpu(), recon_x.view(64, 64).cpu(), torch.from_numpy(recon_bits)]
)
# print(f"mask loss: {loss:.4f}")
return prec, rec, comp_data
def distance_measure(model: VAE, img: Tensor):
model.eval()
with torch.no_grad():
mask = img.to(device)
recon, mean, _ = model(mask)
_, recon_mean, _ = model(recon.view(-1, 64, 64))
distance = torch.norm(mean - recon_mean, p=2)
return distance, make_grid(
torch.stack([mask[0], recon.view(-1, 64, 64)]).cpu(), nrow=2, padding=0
)
def complexity_measure(
model_gb: nn.Module,
model_lb: nn.Module,
img: Tensor,
epsilon=0.4,
save_preliminary=False,
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
recon_bits_gb = recon_gb.view(-1, 64, 64).cpu() > epsilon
recon_bits_lb = recon_lb.view(-1, 64, 64).cpu() > epsilon
mask_bits = mask[0].cpu() > 0
if save_preliminary:
save_image(
torch.stack(
[mask_bits.float(), recon_bits_gb.float(), recon_bits_lb.float()]
).cpu(),
f"shape_complexity/results/mask_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
save_image(
torch.stack(
[
(mask_bits & recon_bits_gb).float(),
(recon_bits_gb & ~mask_bits).float(),
(mask_bits & recon_bits_lb).float(),
(recon_bits_lb & ~mask_bits).float(),
]
).cpu(),
f"shape_complexity/results/tp_fp_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
tp_gb = (mask_bits & recon_bits_gb).sum()
fp_gb = (recon_bits_gb & ~mask_bits).sum()
tp_lb = (mask_bits & recon_bits_lb).sum()
fp_lb = (recon_bits_lb & ~mask_bits).sum()
prec_gb = tp_gb / (tp_gb + fp_gb)
prec_lb = tp_lb / (tp_lb + fp_lb)
complexity = 1 - (prec_gb - np.abs(prec_gb - prec_lb))
complexity_lb = 1 - prec_lb
complexity_gb = 1 - prec_gb
# 1 - (0.4 - abs(0.4 - 0.7)) = 0.9
# 1 - 0.7 = 0.3
return (
complexity,
complexity_lb,
complexity_gb,
prec_gb - prec_lb,
prec_lb,
prec_gb,
make_grid(
torch.stack(
[mask[0], recon_lb.view(-1, 64, 64), recon_gb.view(-1, 64, 64)]
).cpu(),
nrow=3,
padding=0,
),
)
def alt_complexity_measure(
model_gb: nn.Module, model_lb: nn.Module, img: Tensor, epsilon=0.4
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
bce_gb = F.binary_cross_entropy(recon_gb, mask.view(-1, 4096), reduction="sum")
bce_lb = F.binary_cross_entropy(recon_lb, mask.view(-1, 4096), reduction="sum")
recon_bits_gb = recon_gb.view(-1, 64, 64).cpu().numpy() > epsilon
recon_bits_lb = recon_lb.view(-1, 64, 64).cpu().numpy() > epsilon
mask_bits = mask.cpu().numpy() > 0
tp_gb = (mask_bits & recon_bits_gb).sum()
fp_gb = (recon_bits_gb & ~mask_bits).sum()
tp_lb = (mask_bits & recon_bits_lb).sum()
fp_lb = (recon_bits_lb & ~mask_bits).sum()
prec_gb = tp_gb / (tp_gb + fp_gb)
prec_lb = tp_lb / (tp_lb + fp_lb)
complexity = 1 - (prec_gb - np.abs(prec_gb - prec_lb))
return complexity
def plot_samples(masks: Tensor, complexities: npt.NDArray):
dpi = 150
rows = cols = 20
total = rows * cols
n_samples, _, y, x = masks.shape
extent = (0, x - 1, 0, y - 1)
if total != n_samples:
raise Exception("shape mismatch")
fig = plt.figure(figsize=(32, 16), dpi=dpi)
for idx in np.arange(n_samples):
ax = fig.add_subplot(rows, cols, idx + 1, xticks=[], yticks=[])
plt.imshow(masks[idx][0], cmap=plt.cm.gray, extent=extent)
ax.set_title(
f"{complexities[idx]:.4f}",
fontdict={"fontsize": 6, "color": "orange"},
y=0.35,
)
fig.patch.set_facecolor("#292929")
height_px = y * rows
width_px = x * cols
fig.set_size_inches(width_px / (dpi / 2), height_px / (dpi / 2), forward=True)
fig.tight_layout(pad=0)
return fig
def visualize_sort_mean(data_loader: DataLoader, model: VAE):
masks = torch.zeros((400, 3, 64, 128))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
distance, mask_recon_grid = distance_measure(model, mask)
masks[i] = mask_recon_grid
distances[i] = distance
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.savefig("shape_complexity/results/distance_plot.png")
return plot_samples(masks_sorted, distances.numpy()[sort_idx])
def visualize_sort(dataset, model_gb: nn.Module, model_lb: nn.Module):
sampler = RandomSampler(dataset, replacement=True, num_samples=400)
data_loader = DataLoader(dataset, batch_size=1, sampler=sampler)
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
diffs = []
for i, (mask, _) in enumerate(data_loader, 0):
complexity, _, _, diff, mask_recon_grid = complexity_measure(
model_gb, model_lb, mask, save_preliminary=True
)
masks[i] = mask_recon_grid
diffs.append(diff)
complexities[i] = complexity
sort_idx = np.argsort(np.array(complexities))
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(diffs)), np.sort(diffs))
plt.savefig("shape_complexity/results/diff_plot.png")
return plot_samples(masks_sorted, complexities[sort_idx])
def visualize_sort_fixed(data_loader, model_gb: nn.Module, model_lb: nn.Module):
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
complexities_lb = torch.zeros((400,))
complexities_gb = torch.zeros((400,))
diffs = []
prec_lbs = []
prec_gbs = []
for i, (mask, _) in enumerate(data_loader, 0):
(
complexity,
lb,
gb,
diff,
prec_lb,
prec_gb,
mask_recon_grid,
) = complexity_measure(model_gb, model_lb, mask, save_preliminary=True)
masks[i] = mask_recon_grid
diffs.append(diff)
prec_lbs.append(prec_lb)
prec_gbs.append(prec_gb)
complexities[i] = complexity
complexities_lb[i] = lb
complexities_gb[i] = gb
sort_idx = np.argsort(np.array(complexities))
sort_idx_lb = np.argsort(np.array(complexities_lb))
sort_idx_gb = np.argsort(np.array(complexities_gb))
masks_sorted = masks.numpy()[sort_idx]
masks_sorted_lb = masks.numpy()[sort_idx_lb]
masks_sorted_gb = masks.numpy()[sort_idx_gb]
diff_sort_idx = np.argsort(diffs)
# plt.savefig("shape_complexity/results/diff_plot.png")
# plt.clf
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(np.arange(len(prec_lbs)), np.array(prec_lbs)[diff_sort_idx], label="lower")
ax1.plot(
np.arange(len(prec_gbs)), np.array(prec_gbs)[diff_sort_idx], label="higher"
)
ax2.plot(np.arange(len(diffs)), np.sort(diffs), color="red")
ax1.legend()
ax2.legend()
plt.savefig("shape_complexity/results/prec_plot.png")
plt.clf()
fig = plot_samples(masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs.png")
plt.close(fig)
fig = plot_samples(masks_sorted_lb, complexities_lb[sort_idx_lb])
fig.savefig("shape_complexity/results/lb.png")
plt.close(fig)
fig = plot_samples(masks_sorted_gb, complexities_gb[sort_idx_gb])
fig.savefig("shape_complexity/results/gb.png")
plt.close(fig)
# return plot_samples(masks_sorted, complexities[sort_idx])
LR = 1e-3
EPOCHS = 20
LOAD_PRETRAINED = True
def main():
bottlenecks = [2, 4, 8, 16]
models = {i: VAE(bottleneck=i).to(device) for i in bottlenecks}
optimizers = {i: Adam(model.parameters(), lr=LR) for i, model in models.items()}
data_loader, dataset = load_data()
if LOAD_PRETRAINED:
for i, model in models.items():
model.load_state_dict(
torch.load(f"shape_complexity/trained/VAE_{i}_split_data.pth")
)
else:
for epoch in range(EPOCHS):
for i, model in models.items():
train(
epoch, model=model, optimizer=optimizers[i], data_loader=data_loader
)
test(epoch, models=list(models.values()), dataset=dataset)
for bn in bottlenecks:
if not os.path.exists("trained"):
os.makedirs("trained")
torch.save(models[bn].state_dict(), f"trained/VAE_{bn}_split_data.pth")
bn_gt = 16
bn_lt = 8
# for i in range(10):
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(
# f"shape_complexity/results/this_{bn_gt}_to_{bn_lt}_sample{i}.png"
# )
# figure.clear()
# plt.close(figure)
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(f"shape_complexity/results/sort_{bn_gt}_to_{bn_lt}.png")
sampler = RandomSampler(dataset, replacement=True, num_samples=400)
data_loader = DataLoader(dataset, batch_size=1, sampler=sampler)
visualize_sort_fixed(data_loader, models[bn_gt], models[bn_lt])
fig = visualize_sort_mean(data_loader, models[bn_gt])
fig.savefig(f"shape_complexity/results/sort_mean_bn{bn_gt}.png")
plt.close(fig)
if __name__ == "__main__":
main()