Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
minerl-indexing
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Markus Rothgänger
minerl-indexing
Commits
406133a8
Commit
406133a8
authored
2 years ago
by
Markus Rothgänger
Browse files
Options
Downloads
Patches
Plain Diff
refactor vis stuff
parent
5d4d3bb0
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
shape_complexity/shape_complexity.py
+70
-171
70 additions, 171 deletions
shape_complexity/shape_complexity.py
with
70 additions
and
171 deletions
shape_complexity/shape_complexity.py
+
70
−
171
View file @
406133a8
...
...
@@ -2,8 +2,7 @@ import os
# from zlib import compress
from
bz2
import
compress
import
string
from
textwrap
import
fill
from
typing
import
Callable
import
matplotlib
import
matplotlib.pyplot
as
plt
...
...
@@ -18,7 +17,6 @@ from torch import Tensor, nn
from
torch.optim
import
Adam
from
torch.utils.data
import
DataLoader
,
RandomSampler
,
Dataset
from
torchvision.datasets
import
ImageFolder
from
torchvision.io
import
read_image
from
torchvision.transforms
import
transforms
from
torchvision.utils
import
make_grid
,
save_image
...
...
@@ -488,7 +486,7 @@ def test_mask(model: nn.Module, path: str, label: int, epsilon=0.4):
return
prec
,
rec
,
comp_data
def
distance_measure
(
model
:
VAE
,
img
:
Tensor
):
def
distance_measure
(
img
:
Tensor
,
model
:
VAE
):
model
.
eval
()
with
torch
.
no_grad
():
...
...
@@ -511,9 +509,9 @@ def compression_complexity(img: Tensor, fill_ratio_norm=False):
if
fill_ratio_norm
:
fill_ratio
=
np_img
.
sum
().
item
()
/
np
.
ones_like
(
np_img
).
sum
().
item
()
return
len
(
compressed
)
*
(
1
-
fill_ratio
)
return
len
(
compressed
)
*
(
1
-
fill_ratio
)
,
None
return
len
(
compressed
)
return
len
(
compressed
)
,
None
def
fft_measure
(
img
:
Tensor
):
...
...
@@ -533,13 +531,13 @@ def fft_measure(img: Tensor):
mean_freq
=
np
.
sqrt
(
np
.
power
(
mean_x_freq
,
2
)
+
np
.
power
(
mean_y_freq
,
2
))
# mean frequency in range 0 to 0.5
return
mean_freq
/
0.5
return
mean_freq
/
0.5
,
None
def
complexity_measure
(
img
:
Tensor
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
,
img
:
Tensor
,
epsilon
=
0.4
,
fill_ratio_norm
=
False
,
):
...
...
@@ -581,7 +579,7 @@ def complexity_measure(
)
def
mean_precision
(
models
:
list
[
nn
.
Module
],
img
:
Tensor
,
epsilon
=
0.4
):
def
mean_precision
(
img
:
Tensor
,
models
:
list
[
nn
.
Module
],
epsilon
=
0.4
):
mask
=
img
.
to
(
device
)
mask_bits
=
mask
[
0
].
cpu
()
>
0
...
...
@@ -598,13 +596,13 @@ def mean_precision(models: list[nn.Module], img: Tensor, epsilon=0.4):
prec
=
tp
/
(
tp
+
fp
)
precisions
[
i
]
=
prec
return
1
-
precisions
.
mean
()
return
1
-
precisions
.
mean
()
,
None
def
complexity_measure_diff
(
img
:
Tensor
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
,
img
:
Tensor
,
):
model_gb
.
eval
()
model_lb
.
eval
()
...
...
@@ -628,7 +626,7 @@ def complexity_measure_diff(
)
def
plot_samples
(
masks
:
Tensor
,
complexitie
s
:
npt
.
NDArray
):
def
plot_samples
(
masks
:
Tensor
,
rating
s
:
npt
.
NDArray
):
dpi
=
150
rows
=
cols
=
20
total
=
rows
*
cols
...
...
@@ -645,7 +643,7 @@ def plot_samples(masks: Tensor, complexities: npt.NDArray):
plt
.
imshow
(
masks
[
idx
][
0
],
cmap
=
plt
.
cm
.
gray
,
extent
=
extent
)
ax
.
set_title
(
f
"
{
complexitie
s
[
idx
]
:
.
4
f
}
"
,
f
"
{
rating
s
[
idx
]
:
.
4
f
}
"
,
fontdict
=
{
"
fontsize
"
:
6
,
"
color
"
:
"
orange
"
},
y
=
0.35
,
)
...
...
@@ -659,109 +657,52 @@ def plot_samples(masks: Tensor, complexities: npt.NDArray):
return
fig
def
visualize_sort_mean
(
data_loader
:
DataLoader
,
model
:
VAE
):
recon_masks
=
torch
.
zeros
((
400
,
3
,
64
,
128
))
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
distances
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
distance
,
mask_recon_grid
=
distance_measure
(
model
,
mask
)
masks
[
i
]
=
mask
[
0
]
recon_masks
[
i
]
=
mask_recon_grid
distances
[
i
]
=
distance
sort_idx
=
torch
.
argsort
(
distances
)
recon_masks_sorted
=
recon_masks
.
numpy
()[
sort_idx
]
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
plt
.
plot
(
np
.
arange
(
len
(
distances
)),
np
.
sort
(
distances
.
numpy
()))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
latent mean L2 distance
"
)
plt
.
savefig
(
"
shape_complexity/results/distance_plot.png
"
)
return
(
plot_samples
(
masks_sorted
,
distances
.
numpy
()[
sort_idx
]),
plot_samples
(
recon_masks_sorted
,
distances
.
numpy
()[
sort_idx
]),
)
def
visualize_sort_compression
(
data_loader
:
DataLoader
,
fill_ratio_norm
=
False
):
def
visualize_sort
(
data_loader
:
DataLoader
,
metric_fn
:
Callable
[[
Tensor
,
any
],
tuple
[
torch
.
float32
,
Tensor
]],
metric_name
:
str
,
*
fn_args
:
any
,
plot_ratings
=
False
,
**
fn_kwargs
:
any
,
):
recon_masks
=
None
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
distances
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
masks
[
i
]
=
mask
[
0
]
distances
[
i
]
=
compression_complexity
(
mask
,
fill_ratio_norm
)
sort_idx
=
torch
.
argsort
(
distances
)
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
plt
.
plot
(
np
.
arange
(
len
(
distances
)),
np
.
sort
(
distances
.
numpy
()))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
compression length
"
)
plt
.
savefig
(
"
shape_complexity/results/compression_plot.png
"
)
return
plot_samples
(
masks_sorted
,
distances
.
numpy
()[
sort_idx
])
ratings
=
torch
.
zeros
((
400
,))
plot_recons
=
True
def
visualize_sort_fft
(
data_loader
:
DataLoader
):
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
distances
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
masks
[
i
]
=
mask
[
0
]
distances
[
i
]
=
fft_measure
(
mask
)
sort_idx
=
torch
.
argsort
(
distances
)
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
rating
,
mask_recon_grid
=
metric_fn
(
mask
,
*
fn_args
,
**
fn_kwargs
)
if
plot_recons
and
mask_recon_grid
==
None
:
plot_recons
=
False
elif
plot_recons
and
recon_masks
is
None
:
recon_masks
=
torch
.
zeros
((
400
,
*
mask_recon_grid
.
shape
))
plt
.
plot
(
np
.
arange
(
len
(
distances
)),
np
.
sort
(
distances
.
numpy
()))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
mean unidirectional frequency
"
)
plt
.
savefig
(
"
shape_complexity/results/fft_plot.png
"
)
return
plot_samples
(
masks_sorted
,
distances
.
numpy
()[
sort_idx
])
def
visualize_sort_mean_precision
(
models
:
list
[
nn
.
Module
],
data_loader
:
DataLoader
):
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
precisions
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
masks
[
i
]
=
mask
[
0
]
precisions
[
i
]
=
mean_precision
(
models
,
mask
)
sort_idx
=
torch
.
argsort
(
precisions
)
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
ratings
[
i
]
=
rating
plt
.
plot
(
np
.
arange
(
len
(
precisions
)),
np
.
sort
(
precisions
.
numpy
()))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
mean precision
"
)
plt
.
savefig
(
"
shape_complexity/results/mean_prec_plot.png
"
)
if
plot_recons
:
recon_masks
[
i
]
=
mask_recon_grid
return
plot_samples
(
masks_sorted
,
precisions
.
numpy
()[
sort_idx
])
if
plot_ratings
:
plt
.
plot
(
np
.
arange
(
len
(
ratings
)),
np
.
sort
(
ratings
.
numpy
()))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
f
"
{
metric_name
}
rating
"
)
plt
.
savefig
(
f
"
shape_complexity/results/
{
metric_name
}
_rating_plot.png
"
)
plt
.
close
()
sort_idx
=
torch
.
argsort
(
ratings
)
def
visualize_sort_diff
(
data_loader
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
):
masks_recon
=
torch
.
zeros
((
400
,
3
,
64
,
192
))
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
diffs
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
diff
,
mask_recon_grid
=
complexity_measure_diff
(
model_gb
,
model_lb
,
mask
)
masks_recon
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
diffs
[
i
]
=
diff
sort_idx
=
np
.
argsort
(
np
.
array
(
diffs
))
recon_masks_sorted
=
masks_recon
.
numpy
()[
sort_idx
]
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
fig
=
plot_samples
(
masks_sorted
,
ratings
.
numpy
()[
sort_idx
])
fig
.
savefig
(
f
"
shape_complexity/results/
{
metric_name
}
_sort.png
"
)
plt
.
close
(
fig
)
plt
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
pixelwise difference of reconstructions
"
)
plt
.
savefig
(
"
shape_complexity/results/px_diff_plot.png
"
)
return
(
plot_samples
(
masks_sorted
,
diffs
[
sort_idx
]),
plot_samples
(
recon_masks_sorted
,
diffs
[
sort_idx
]),
)
if
plot_recons
:
recon_masks_sorted
=
recon_masks
.
numpy
()[
sort_idx
]
fig_recon
=
plot_samples
(
recon_masks_sorted
,
ratings
.
numpy
()[
sort_idx
])
fig_recon
.
savefig
(
f
"
shape_complexity/results/
{
metric_name
}
_sort_recon.png
"
)
plt
.
close
(
fig_recon
)
def
visualize_sort_3dim
(
...
...
@@ -771,10 +712,12 @@ def visualize_sort_3dim(
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
measures
=
torch
.
zeros
((
400
,
3
))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
c_compress
=
compression_complexity
(
mask
)
c_fft
=
fft_measure
(
mask
)
c_compress
,
_
=
compression_complexity
(
mask
,
fill_ratio_norm
=
True
)
c_fft
,
_
=
fft_measure
(
mask
)
# TODO: maybe exchange by diff or mean measure instead of precision
c_vae
,
mask_recon_grid
=
complexity_measure
(
model_gb
,
model_lb
,
mask
)
c_vae
,
mask_recon_grid
=
complexity_measure
(
mask
,
model_gb
,
model_lb
,
fill_ratio_norm
=
True
)
masks_recon
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
measures
[
i
]
=
torch
.
tensor
([
c_compress
,
c_fft
,
c_vae
])
...
...
@@ -803,39 +746,10 @@ def visualize_sort_3dim(
)
def
visualize_sort_complexity
(
data_loader
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
):
recon_masks
=
torch
.
zeros
((
400
,
3
,
64
,
192
))
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
complexities
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
(
complexity
,
mask_recon_grid
,)
=
complexity_measure
(
model_gb
,
model_lb
,
mask
,
fill_ratio_norm
=
True
,
)
recon_masks
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
complexities
[
i
]
=
complexity
sort_idx
=
np
.
argsort
(
np
.
array
(
complexities
))
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
recon_masks_sorted
=
recon_masks
.
numpy
()[
sort_idx
]
fig
=
plot_samples
(
recon_masks_sorted
,
complexities
[
sort_idx
])
fig
.
savefig
(
"
shape_complexity/results/abs_recon.png
"
)
plt
.
close
(
fig
)
fig
=
plot_samples
(
masks_sorted
,
complexities
[
sort_idx
])
fig
.
savefig
(
"
shape_complexity/results/abs.png
"
)
plt
.
close
(
fig
)
LR
=
1.5e-3
EPOCHS
=
100
LOAD_PRETRAINED
=
True
# TODO: refactor to have one plot function with callable metric function
# TODO: try out pixelwise loss again (in 3d as well)
# TODO: might be a good idea to implement a bbox cut preprocessing transform thingy
...
...
@@ -886,49 +800,34 @@ def main():
bn_gt
=
32
bn_lt
=
8
# for i in range(10):
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(
# f"shape_complexity/results/this_{bn_gt}_to_{bn_lt}_sample{i}.png"
# )
# figure.clear()
# plt.close(figure)
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(f"shape_complexity/results/sort_{bn_gt}_to_{bn_lt}.png")
sampler
=
RandomSampler
(
dataset
,
replacement
=
True
,
num_samples
=
400
)
data_loader
=
DataLoader
(
dataset
,
batch_size
=
1
,
sampler
=
sampler
)
visualize_sort_complexity
(
data_loader
,
models
[
bn_gt
],
models
[
bn_lt
])
# visualize_sort_fixed(data_loader, models[bn_gt], models[bn_lt])
fig
,
fig_recon
=
visualize_sort_3dim
(
data_loader
,
models
[
bn_gt
],
models
[
bn_lt
])
fig
.
savefig
(
f
"
shape_complexity/results/sort_comp_fft_prec.png
"
)
fig_recon
.
savefig
(
f
"
shape_complexity/results/recon_sort_comp_fft_prec.png
"
)
plt
.
close
(
fig
)
plt
.
close
(
fig_recon
)
fig
=
visualize_sort_mean_precision
(
list
(
models
.
values
()),
data_loader
)
fig
.
savefig
(
f
"
shape_complexity/results/sort_mean_prec.png
"
)
plt
.
close
(
fig
)
fig
=
visualize_sort_fft
(
data_loader
)
fig
.
savefig
(
f
"
shape_complexity/results/sort_fft.png
"
)
plt
.
close
(
fig
)
fig
=
visualize_sort_compression
(
data_loader
)
fig
.
savefig
(
f
"
shape_complexity/results/sort_compression.png
"
)
fig
=
visualize_sort_compression
(
data_loader
,
fill_ratio_norm
=
True
)
fig
.
savefig
(
f
"
shape_complexity/results/sort_compression_fill_norm.png
"
)
fig
,
fig_recon
=
visualize_sort_mean
(
data_loader
,
models
[
bn_gt
])
fig
.
savefig
(
f
"
shape_complexity/results/sort_mean_bn
{
bn_gt
}
.png
"
)
fig_recon
.
savefig
(
f
"
shape_complexity/results/recon_sort_mean_bn
{
bn_gt
}
.png
"
)
plt
.
close
(
fig
)
plt
.
close
()
# fig, fig_recon = visualize_sort_diff(data_loader, models[bn_gt], models[bn_lt])
# fig.savefig(f"shape_complexity/results/sort_diff_bn{bn_gt}_bn{bn_lt}.png")
# fig_recon.savefig(
# f"shape_complexity/results/recon_sort_diff_bn{bn_gt}_bn{bn_lt}.png"
# )
# plt.close(fig)
# plt.close(fig_recon)
visualize_sort
(
data_loader
,
complexity_measure
,
"
recon_complexity
"
,
models
[
bn_gt
],
models
[
bn_lt
],
fill_ratio_norm
=
True
,
)
visualize_sort
(
data_loader
,
mean_precision
,
"
mean_precision
"
,
list
(
models
.
values
()))
visualize_sort
(
data_loader
,
fft_measure
,
"
fft
"
)
visualize_sort
(
data_loader
,
compression_complexity
,
"
compression
"
)
visualize_sort
(
data_loader
,
compression_complexity
,
"
compression_fill_norm
"
,
fill_ratio_norm
=
True
,
)
visualize_sort
(
data_loader
,
distance_measure
,
"
latent_l2_distance
"
,
models
[
bn_gt
])
if
__name__
==
"
__main__
"
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment