Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
minerl-indexing
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Markus Rothgänger
minerl-indexing
Commits
4e9197d0
Commit
4e9197d0
authored
2 years ago
by
Markus Rothgänger
Browse files
Options
Downloads
Patches
Plain Diff
remove stuff, add mpeg7 dataset
parent
e218f84e
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
shape_complexity/shape_complexity.py
+76
-164
76 additions, 164 deletions
shape_complexity/shape_complexity.py
with
76 additions
and
164 deletions
shape_complexity/shape_complexity.py
+
76
−
164
View file @
4e9197d0
...
...
@@ -2,9 +2,11 @@ import os
# from zlib import compress
from
bz2
import
compress
import
string
import
matplotlib
import
matplotlib.pyplot
as
plt
from
matplotlib.transforms
import
Transform
import
numpy
as
np
import
numpy.typing
as
npt
import
torch
...
...
@@ -13,8 +15,9 @@ from kornia.morphology import closing
from
PIL
import
Image
from
torch
import
Tensor
,
nn
from
torch.optim
import
Adam
from
torch.utils.data
import
DataLoader
,
RandomSampler
from
torch.utils.data
import
DataLoader
,
RandomSampler
,
Dataset
from
torchvision.datasets
import
ImageFolder
from
torchvision.io
import
read_image
from
torchvision.transforms
import
transforms
from
torchvision.utils
import
make_grid
,
save_image
...
...
@@ -265,6 +268,65 @@ class CloseTransform:
return
transforms
.
F
.
to_pil_image
(
closing
(
x
,
self
.
kernel
))
class
MPEG7ShapeDataset
(
Dataset
):
img_dir
:
str
filenames
:
list
[
str
]
=
[]
labels
:
list
[
str
]
=
[]
label_dict
:
dict
[
str
]
transform
:
Transform
=
None
def
__init__
(
self
,
img_dir
,
transform
=
None
):
self
.
img_dir
=
img_dir
self
.
transform
=
transform
paths
=
os
.
listdir
(
self
.
img_dir
)
labels
=
[]
for
file
in
paths
:
fp
=
os
.
path
.
join
(
self
.
img_dir
,
file
)
if
os
.
path
.
isfile
(
fp
):
label
=
file
.
split
(
"
-
"
)[
0
]
self
.
filenames
.
append
(
fp
)
labels
.
append
(
label
)
label_name_dict
=
dict
.
fromkeys
(
labels
)
self
.
label_dict
=
{
i
:
v
for
(
i
,
v
)
in
enumerate
(
label_name_dict
.
keys
())}
self
.
label_index_dict
=
{
v
:
i
for
(
i
,
v
)
in
self
.
label_dict
.
items
()}
self
.
labels
=
[
self
.
label_index_dict
[
l
]
for
l
in
labels
]
def
__len__
(
self
):
return
len
(
self
.
filenames
)
def
__getitem__
(
self
,
idx
):
img_path
=
self
.
filenames
[
idx
]
gif
=
Image
.
open
(
img_path
)
gif
.
convert
(
"
RGB
"
)
label
=
self
.
labels
[
idx
]
if
self
.
transform
:
image
=
self
.
transform
(
gif
)
return
image
,
label
def
load_mpeg7_data
():
transform
=
transforms
.
Compose
(
[
transforms
.
Grayscale
(),
# transforms.RandomApply([CloseTransform()], p=0.25),
transforms
.
Resize
(
(
64
,
64
),
interpolation
=
transforms
.
InterpolationMode
.
BILINEAR
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
RandomVerticalFlip
(),
transforms
.
ToTensor
(),
]
)
dataset
=
MPEG7ShapeDataset
(
"
shape_complexity/data/mpeg7
"
,
transform
)
data_loader
=
DataLoader
(
dataset
,
batch_size
=
128
,
shuffle
=
True
)
return
data_loader
,
dataset
def
load_data
():
transform
=
transforms
.
Compose
(
[
...
...
@@ -474,7 +536,6 @@ def complexity_measure(
model_lb
:
nn
.
Module
,
img
:
Tensor
,
epsilon
=
0.4
,
save_preliminary
=
False
,
):
model_gb
.
eval
()
model_lb
.
eval
()
...
...
@@ -488,25 +549,6 @@ def complexity_measure(
recon_bits_lb
=
recon_lb
.
view
(
-
1
,
64
,
64
).
cpu
()
>
epsilon
mask_bits
=
mask
[
0
].
cpu
()
>
0
if
save_preliminary
:
save_image
(
torch
.
stack
(
[
mask_bits
.
float
(),
recon_bits_gb
.
float
(),
recon_bits_lb
.
float
()]
).
cpu
(),
f
"
shape_complexity/results/mask_recon
{
model_gb
.
bottleneck
}
_
{
model_lb
.
bottleneck
}
.png
"
,
)
save_image
(
torch
.
stack
(
[
(
mask_bits
&
recon_bits_gb
).
float
(),
(
recon_bits_gb
&
~
mask_bits
).
float
(),
(
mask_bits
&
recon_bits_lb
).
float
(),
(
recon_bits_lb
&
~
mask_bits
).
float
(),
]
).
cpu
(),
f
"
shape_complexity/results/tp_fp_recon
{
model_gb
.
bottleneck
}
_
{
model_lb
.
bottleneck
}
.png
"
,
)
tp_gb
=
(
mask_bits
&
recon_bits_gb
).
sum
()
fp_gb
=
(
recon_bits_gb
&
~
mask_bits
).
sum
()
tp_lb
=
(
mask_bits
&
recon_bits_lb
).
sum
()
...
...
@@ -515,18 +557,9 @@ def complexity_measure(
prec_gb
=
tp_gb
/
(
tp_gb
+
fp_gb
)
prec_lb
=
tp_lb
/
(
tp_lb
+
fp_lb
)
complexity
=
1
-
(
prec_gb
-
np
.
abs
(
prec_gb
-
prec_lb
))
complexity_lb
=
1
-
prec_lb
complexity_gb
=
1
-
prec_gb
# 1 - (0.4 - abs(0.4 - 0.7)) = 0.9
# 1 - 0.7 = 0.3
return
(
complexity
,
complexity_lb
,
complexity_gb
,
prec_gb
-
prec_lb
,
prec_lb
,
prec_gb
,
make_grid
(
torch
.
stack
(
[
mask
[
0
],
recon_lb
.
view
(
-
1
,
64
,
64
),
recon_gb
.
view
(
-
1
,
64
,
64
)]
...
...
@@ -730,9 +763,7 @@ def visualize_sort_3dim(
c_compress
=
compression_complexity
(
mask
)
c_fft
=
fft_measure
(
mask
)
# TODO: maybe exchange by diff or mean measure instead of precision
c_vae
,
_
,
_
,
_
,
_
,
_
,
mask_recon_grid
=
complexity_measure
(
model_gb
,
model_lb
,
mask
)
c_vae
,
mask_recon_grid
=
complexity_measure
(
model_gb
,
model_lb
,
mask
)
masks_recon
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
measures
[
i
]
=
torch
.
tensor
([
c_compress
,
c_fft
,
c_vae
])
...
...
@@ -767,181 +798,55 @@ def visualize_sort(dataset, model_gb: nn.Module, model_lb: nn.Module):
masks
=
torch
.
zeros
((
400
,
3
,
64
,
192
))
complexities
=
torch
.
zeros
((
400
,))
diffs
=
[]
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
complexity
,
_
,
_
,
diff
,
mask_recon_grid
=
complexity_measure
(
complexity
,
mask_recon_grid
=
complexity_measure
(
model_gb
,
model_lb
,
mask
,
save_preliminary
=
True
)
masks
[
i
]
=
mask_recon_grid
diffs
.
append
(
diff
)
complexities
[
i
]
=
complexity
sort_idx
=
np
.
argsort
(
np
.
array
(
complexities
))
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
plt
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
prec difference (L-H)
"
)
plt
.
savefig
(
"
shape_complexity/results/diff_plot.png
"
)
plt
.
clf
()
return
plot_samples
(
masks_sorted
,
complexities
[
sort_idx
])
def
visualize_sort_fixed
(
data_loader
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
):
masks
=
torch
.
zeros
((
400
,
3
,
64
,
192
))
complexities
=
torch
.
zeros
((
400
,))
complexities_lb
=
torch
.
zeros
((
400
,))
complexities_gb
=
torch
.
zeros
((
400
,))
diffs
=
[]
prec_lbs
=
[]
prec_gbs
=
[]
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
(
complexity
,
lb
,
gb
,
diff
,
prec_lb
,
prec_gb
,
mask_recon_grid
,
)
=
complexity_measure
(
model_gb
,
model_lb
,
mask
,
save_preliminary
=
True
)
masks
[
i
]
=
mask_recon_grid
diffs
.
append
(
diff
)
prec_lbs
.
append
(
prec_lb
)
prec_gbs
.
append
(
prec_gb
)
complexities
[
i
]
=
complexity
complexities_lb
[
i
]
=
lb
complexities_gb
[
i
]
=
gb
sort_idx
=
np
.
argsort
(
np
.
array
(
complexities
))
sort_idx_lb
=
np
.
argsort
(
np
.
array
(
complexities_lb
))
sort_idx_gb
=
np
.
argsort
(
np
.
array
(
complexities_gb
))
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
masks_sorted_lb
=
masks
.
numpy
()[
sort_idx_lb
]
masks_sorted_gb
=
masks
.
numpy
()[
sort_idx_gb
]
diff_sort_idx
=
np
.
argsort
(
diffs
)
# plt.savefig("shape_complexity/results/diff_plot.png")
# plt.clf
fig
,
ax1
=
plt
.
subplots
()
ax2
=
ax1
.
twinx
()
ax1
.
plot
(
np
.
arange
(
len
(
prec_lbs
)),
np
.
array
(
prec_lbs
)[
diff_sort_idx
],
label
=
f
"
bottleneck
{
model_lb
.
bottleneck
}
"
,
)
ax1
.
plot
(
np
.
arange
(
len
(
prec_gbs
)),
np
.
array
(
prec_gbs
)[
diff_sort_idx
],
label
=
f
"
bottleneck
{
model_gb
.
bottleneck
}
"
,
)
ax2
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
),
color
=
"
red
"
,
label
=
"
prec difference (H - L)
"
,
)
ax1
.
legend
(
loc
=
"
lower left
"
)
ax2
.
legend
(
loc
=
"
lower right
"
)
ax1
.
set_ylabel
(
"
precision
"
)
ax2
.
set_ylabel
(
"
prec difference (H-L)
"
)
plt
.
savefig
(
"
shape_complexity/results/prec_plot.png
"
)
plt
.
clf
()
fig
=
plot_samples
(
masks_sorted
,
complexities
[
sort_idx
])
fig
.
savefig
(
"
shape_complexity/results/abs.png
"
)
plt
.
close
(
fig
)
fig
=
plot_samples
(
masks_sorted_lb
,
complexities_lb
[
sort_idx_lb
])
fig
.
savefig
(
"
shape_complexity/results/lb.png
"
)
plt
.
close
(
fig
)
fig
=
plot_samples
(
masks_sorted_gb
,
complexities_gb
[
sort_idx_gb
])
fig
.
savefig
(
"
shape_complexity/results/gb.png
"
)
plt
.
close
(
fig
)
def
visualize_sort_group
(
data_loader
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
):
recon_masks
=
torch
.
zeros
((
400
,
3
,
64
,
192
))
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
complexities
=
torch
.
zeros
((
400
,))
diffs
=
np
.
zeros
((
400
,))
prec_gbs
=
np
.
zeros
((
400
,))
prec_lbs
=
np
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
(
complexity
,
_
,
_
,
diff
,
prec_lb
,
prec_gb
,
mask_recon_grid
,
)
=
complexity_measure
(
model_gb
,
model_lb
,
mask
,
save_preliminary
=
True
)
recon_masks
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
diffs
[
i
]
=
diff
prec_gbs
[
i
]
=
prec_gb
prec_lbs
[
i
]
=
prec_lb
complexities
[
i
]
=
complexity
sort_idx
=
np
.
argsort
(
np
.
array
(
complexities
))
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
recon_masks_sorted
=
recon_masks
.
numpy
()[
sort_idx
]
# group_labels = ["lte_0", "gt_0_lte0.05", "gt_0.05"]
# bin_edges = [-np.inf, 0.0, 0.05, np.inf]
# bins = np.digitize(diffs, bins=bin_edges, right=True)
# for i in range(bins.min(), bins.max() + 1):
# bin_idx = bins == i
# binned_prec_gb = prec_gbs[bin_idx]
# prec_mean = binned_prec_gb.mean()
# prec_idx = prec_gbs > prec_mean
# binned_masks_high = recon_masks[bin_idx & prec_idx]
# binned_masks_low = recon_masks[bin_idx & ~prec_idx]
# save_image(
# binned_masks_high,
# f"shape_complexity/results/diff_{group_labels[i-1]}_high.png",
# padding=10,
# )
# save_image(
# binned_masks_low,
# f"shape_complexity/results/diff_{group_labels[i-1]}_low.png",
# padding=10,
# )
# diff_sort_idx = np.argsort(diffs)
# fig, ax1 = plt.subplots()
# ax2 = ax1.twinx()
# ax1.plot(
# np.arange(len(prec_lbs)),
# np.array(prec_lbs)[diff_sort_idx],
# label=f"bottleneck {model_lb.bottleneck}",
# )
# ax1.plot(
# np.arange(len(prec_gbs)),
# np.array(prec_gbs)[diff_sort_idx],
# label=f"bottleneck {model_gb.bottleneck}",
# )
# ax2.plot(
# np.arange(len(diffs)),
# np.sort(diffs),
# color="red",
# label="prec difference (H - L)",
# )
# ax1.legend(loc="lower left")
# ax2.legend(loc="lower right")
# ax1.set_ylabel("precision")
# ax2.set_ylabel("prec difference (H-L)")
# ax1.set_xlabel("image")
# plt.savefig("shape_complexity/results/prec_plot.png")
# plt.tight_layout(pad=2)
# plt.clf()
fig
=
plot_samples
(
recon_masks_sorted
,
complexities
[
sort_idx
])
fig
.
savefig
(
"
shape_complexity/results/abs_recon.png
"
)
plt
.
close
(
fig
)
...
...
@@ -951,9 +856,15 @@ def visualize_sort_group(data_loader, model_gb: nn.Module, model_lb: nn.Module):
plt
.
close
(
fig
)
LR
=
1e-3
EPOCHS
=
10
LOAD_PRETRAINED
=
True
LR
=
1.5e-3
EPOCHS
=
100
LOAD_PRETRAINED
=
False
# TODO: build pixel ratio normalization for large black areas
# -> ideally, this fixes the compression metric
# TODO: try out pixelwise loss again (in 3d as well)
# TODO: might be a good idea to implement a bbox cut preprocessing transform thingy
def
main
():
...
...
@@ -961,7 +872,8 @@ def main():
models
=
{
i
:
CONVVAE
(
bottleneck
=
i
).
to
(
device
)
for
i
in
bottlenecks
}
optimizers
=
{
i
:
Adam
(
model
.
parameters
(),
lr
=
LR
)
for
i
,
model
in
models
.
items
()}
data_loader
,
dataset
=
load_data
()
# data_loader, dataset = load_data()
data_loader
,
dataset
=
load_mpeg7_data
()
train_size
=
int
(
0.8
*
len
(
dataset
))
test_size
=
len
(
dataset
)
-
train_size
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment