Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
minerl-indexing
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Markus Rothgänger
minerl-indexing
Commits
d8cb6252
Commit
d8cb6252
authored
2 years ago
by
Markus Rothgänger
Browse files
Options
Downloads
Patches
Plain Diff
wip
parent
c2dd93b0
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
shape_complexity/shape_complexity.py
+270
-30
270 additions, 30 deletions
shape_complexity/shape_complexity.py
with
270 additions
and
30 deletions
shape_complexity/shape_complexity.py
+
270
−
30
View file @
d8cb6252
import
os
import
matplotlib
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
numpy.typing
as
npt
...
...
@@ -14,6 +15,7 @@ from torchvision.transforms import transforms
from
torchvision.utils
import
save_image
,
make_grid
device
=
torch
.
device
(
"
cuda
"
)
matplotlib
.
use
(
"
Agg
"
)
dx
=
[
+
1
,
0
,
-
1
,
0
]
dy
=
[
0
,
+
1
,
0
,
-
1
]
...
...
@@ -119,18 +121,81 @@ class VAE(nn.Module):
z
=
self
.
reparameterize
(
mu
,
logvar
)
return
self
.
decode
(
z
),
mu
,
logvar
# Reconstruction + KL divergence losses summed over all elements and batch
def
loss
(
self
,
recon_x
,
x
,
mu
,
logvar
):
BCE
=
F
.
binary_cross_entropy
(
recon_x
,
x
.
view
(
-
1
,
4096
),
reduction
=
"
sum
"
)
# Reconstruction + KL divergence losses summed over all elements and batch
def
loss_function
(
recon_x
,
x
,
mu
,
logvar
):
BCE
=
F
.
binary_cross_entropy
(
recon_x
,
x
.
view
(
-
1
,
4096
),
reduction
=
"
sum
"
)
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD
=
-
0.5
*
torch
.
sum
(
1
+
logvar
-
mu
.
pow
(
2
)
-
logvar
.
exp
())
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD
=
-
0.5
*
torch
.
sum
(
1
+
logvar
-
mu
.
pow
(
2
)
-
logvar
.
exp
())
return
BCE
+
KLD
return
BCE
+
KLD
class
CONVVAE
(
nn
.
Module
):
def
__init__
(
self
,
bottleneck
=
2
,
):
super
(
CONVVAE
,
self
).
__init__
()
self
.
bottleneck
=
bottleneck
self
.
feature_dim
=
32
*
56
*
56
self
.
conv
=
nn
.
Sequential
(
nn
.
Conv2d
(
1
,
16
,
5
),
nn
.
ReLU
(),
nn
.
Conv2d
(
16
,
32
,
5
),
nn
.
ReLU
()
)
self
.
encode_mu
=
nn
.
Sequential
(
nn
.
Flatten
(),
nn
.
Linear
(
self
.
feature_dim
,
self
.
bottleneck
)
)
self
.
encode_logvar
=
nn
.
Sequential
(
nn
.
Flatten
(),
nn
.
Linear
(
self
.
feature_dim
,
self
.
bottleneck
)
)
self
.
decode_linear
=
nn
.
Sequential
(
nn
.
Linear
(
self
.
bottleneck
,
self
.
feature_dim
),
nn
.
ReLU
(),
)
self
.
decode_conv
=
nn
.
Sequential
(
nn
.
ConvTranspose2d
(
32
,
16
,
5
),
nn
.
ReLU
(),
nn
.
ConvTranspose2d
(
16
,
1
,
5
),
nn
.
Sigmoid
(),
)
def
encode
(
self
,
x
):
x
=
self
.
conv
(
x
)
return
self
.
encode_mu
(
x
),
self
.
encode_logvar
(
x
)
def
decode
(
self
,
z
):
z
=
self
.
decode_linear
(
z
)
z
=
z
.
view
(
-
1
,
32
,
56
,
56
)
return
self
.
decode_conv
(
z
)
def
reparameterize
(
self
,
mu
,
logvar
):
std
=
torch
.
exp
(
0.5
*
logvar
)
eps
=
torch
.
randn_like
(
std
)
return
mu
+
eps
*
std
def
forward
(
self
,
x
):
mu
,
logvar
=
self
.
encode
(
x
)
z
=
self
.
reparameterize
(
mu
,
logvar
)
return
self
.
decode
(
z
),
mu
,
logvar
def
loss
(
self
,
recon_x
,
x
,
mu
,
logvar
):
"""
https://github.com/pytorch/examples/blob/main/vae/main.py
"""
BCE
=
F
.
binary_cross_entropy
(
recon_x
,
x
,
reduction
=
"
sum
"
)
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD
=
-
0.5
*
torch
.
sum
(
1
+
logvar
-
mu
.
pow
(
2
)
-
logvar
.
exp
())
return
BCE
+
KLD
def
load_data
():
...
...
@@ -172,7 +237,7 @@ def load_data():
return
data_loader
,
dataset
def
train
(
epoch
,
model
,
optimizer
,
data_loader
,
log_interval
=
40
):
def
train
(
epoch
,
model
:
VAE
or
CONVVAE
,
optimizer
,
data_loader
,
log_interval
=
40
):
model
.
train
()
train_loss
=
0
for
batch_idx
,
(
data
,
_
)
in
enumerate
(
data_loader
):
...
...
@@ -180,7 +245,7 @@ def train(epoch, model, optimizer, data_loader, log_interval=40):
optimizer
.
zero_grad
()
recon_batch
,
mu
,
logvar
=
model
(
data
)
loss
=
loss_function
(
recon_batch
,
data
,
mu
,
logvar
)
loss
=
model
.
loss
(
recon_batch
,
data
,
mu
,
logvar
)
loss
.
backward
()
train_loss
+=
loss
.
item
()
optimizer
.
step
()
...
...
@@ -219,7 +284,7 @@ def test(epoch, models, dataset):
for
j
,
model
in
enumerate
(
models
):
recon_batch
,
mu
,
logvar
=
model
(
data
)
test_loss
[
j
]
+=
loss_function
(
recon_batch
,
data
,
mu
,
logvar
).
item
()
test_loss
[
j
]
+=
model
.
loss
(
recon_batch
,
data
,
mu
,
logvar
).
item
()
if
i
==
0
:
n
=
min
(
data
.
size
(
0
),
20
)
...
...
@@ -282,12 +347,13 @@ def distance_measure(model: VAE, img: Tensor):
with
torch
.
no_grad
():
mask
=
img
.
to
(
device
)
recon
,
mean
,
_
=
model
(
mask
)
_
,
recon_mean
,
_
=
model
(
recon
.
view
(
-
1
,
64
,
64
))
# TODO: apply threshold here?!
_
,
recon_mean
,
_
=
model
(
recon
)
distance
=
torch
.
norm
(
mean
-
recon_mean
,
p
=
2
)
return
distance
,
make_grid
(
torch
.
stack
([
mask
[
0
],
recon
.
view
(
-
1
,
64
,
64
)
]).
cpu
(),
nrow
=
2
,
padding
=
0
torch
.
stack
([
mask
[
0
],
recon
[
0
]
]).
cpu
(),
nrow
=
2
,
padding
=
0
)
...
...
@@ -359,6 +425,33 @@ def complexity_measure(
)
def
complexity_measure_diff
(
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
,
img
:
Tensor
,
):
model_gb
.
eval
()
model_lb
.
eval
()
with
torch
.
no_grad
():
mask
=
img
.
to
(
device
)
recon_gb
,
_
,
_
=
model_gb
(
mask
)
recon_lb
,
_
,
_
=
model_lb
(
mask
)
diff
=
torch
.
abs
((
recon_gb
-
recon_lb
).
cpu
().
sum
())
return
(
diff
,
make_grid
(
torch
.
stack
(
[
mask
[
0
],
recon_lb
.
view
(
-
1
,
64
,
64
),
recon_gb
.
view
(
-
1
,
64
,
64
)]
).
cpu
(),
nrow
=
3
,
padding
=
0
,
),
)
def
alt_complexity_measure
(
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
,
img
:
Tensor
,
epsilon
=
0.4
):
...
...
@@ -421,20 +514,51 @@ def plot_samples(masks: Tensor, complexities: npt.NDArray):
def
visualize_sort_mean
(
data_loader
:
DataLoader
,
model
:
VAE
):
masks
=
torch
.
zeros
((
400
,
3
,
64
,
128
))
recon_masks
=
torch
.
zeros
((
400
,
3
,
64
,
128
))
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
distances
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
distance
,
mask_recon_grid
=
distance_measure
(
model
,
mask
)
masks
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
recon_masks
[
i
]
=
mask_recon_grid
distances
[
i
]
=
distance
sort_idx
=
torch
.
argsort
(
distances
)
recon_masks_sorted
=
recon_masks
.
numpy
()[
sort_idx
]
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
plt
.
plot
(
np
.
arange
(
len
(
distances
)),
np
.
sort
(
distances
.
numpy
()))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
latent mean L2 distance
"
)
plt
.
savefig
(
"
shape_complexity/results/distance_plot.png
"
)
return
plot_samples
(
masks_sorted
,
distances
.
numpy
()[
sort_idx
])
return
plot_samples
(
masks_sorted
,
distances
.
numpy
()[
sort_idx
]),
plot_samples
(
recon_masks_sorted
,
distances
.
numpy
()[
sort_idx
]
)
def
visualize_sort_diff
(
data_loader
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
):
masks_recon
=
torch
.
zeros
((
400
,
3
,
64
,
192
))
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
diffs
=
torch
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
diff
,
mask_recon_grid
=
complexity_measure_diff
(
model_gb
,
model_lb
,
mask
)
masks_recon
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
diffs
[
i
]
=
diff
sort_idx
=
np
.
argsort
(
np
.
array
(
diffs
))
recon_masks_sorted
=
masks_recon
.
numpy
()[
sort_idx
]
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
plt
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
pixelwise difference of reconstructions
"
)
plt
.
savefig
(
"
shape_complexity/results/px_diff_plot.png
"
)
return
plot_samples
(
masks_sorted
,
diffs
[
sort_idx
]),
plot_samples
(
recon_masks_sorted
,
diffs
[
sort_idx
]
)
def
visualize_sort
(
dataset
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
):
...
...
@@ -456,6 +580,8 @@ def visualize_sort(dataset, model_gb: nn.Module, model_lb: nn.Module):
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
plt
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
))
plt
.
xlabel
(
"
images
"
)
plt
.
ylabel
(
"
prec difference (L-H)
"
)
plt
.
savefig
(
"
shape_complexity/results/diff_plot.png
"
)
return
plot_samples
(
masks_sorted
,
complexities
[
sort_idx
])
...
...
@@ -500,13 +626,26 @@ def visualize_sort_fixed(data_loader, model_gb: nn.Module, model_lb: nn.Module):
fig
,
ax1
=
plt
.
subplots
()
ax2
=
ax1
.
twinx
()
ax1
.
plot
(
np
.
arange
(
len
(
prec_lbs
)),
np
.
array
(
prec_lbs
)[
diff_sort_idx
],
label
=
"
lower
"
)
ax1
.
plot
(
np
.
arange
(
len
(
prec_gbs
)),
np
.
array
(
prec_gbs
)[
diff_sort_idx
],
label
=
"
higher
"
np
.
arange
(
len
(
prec_lbs
)),
np
.
array
(
prec_lbs
)[
diff_sort_idx
],
label
=
f
"
bottleneck
{
model_lb
.
bottleneck
}
"
,
)
ax1
.
plot
(
np
.
arange
(
len
(
prec_gbs
)),
np
.
array
(
prec_gbs
)[
diff_sort_idx
],
label
=
f
"
bottleneck
{
model_gb
.
bottleneck
}
"
,
)
ax2
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
),
color
=
"
red
"
,
label
=
"
prec difference (H - L)
"
,
)
ax2
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
),
color
=
"
red
"
)
ax1
.
legend
()
ax2
.
legend
()
ax1
.
legend
(
loc
=
"
lower left
"
)
ax2
.
legend
(
loc
=
"
lower right
"
)
ax1
.
set_ylabel
(
"
precision
"
)
ax2
.
set_ylabel
(
"
prec difference (H-L)
"
)
plt
.
savefig
(
"
shape_complexity/results/prec_plot.png
"
)
plt
.
clf
()
...
...
@@ -520,7 +659,95 @@ def visualize_sort_fixed(data_loader, model_gb: nn.Module, model_lb: nn.Module):
fig
.
savefig
(
"
shape_complexity/results/gb.png
"
)
plt
.
close
(
fig
)
# return plot_samples(masks_sorted, complexities[sort_idx])
def
visualize_sort_group
(
data_loader
,
model_gb
:
nn
.
Module
,
model_lb
:
nn
.
Module
):
recon_masks
=
torch
.
zeros
((
400
,
3
,
64
,
192
))
masks
=
torch
.
zeros
((
400
,
1
,
64
,
64
))
complexities
=
torch
.
zeros
((
400
,))
diffs
=
np
.
zeros
((
400
,))
prec_gbs
=
np
.
zeros
((
400
,))
prec_lbs
=
np
.
zeros
((
400
,))
for
i
,
(
mask
,
_
)
in
enumerate
(
data_loader
,
0
):
(
complexity
,
_
,
_
,
diff
,
prec_lb
,
prec_gb
,
mask_recon_grid
,
)
=
complexity_measure
(
model_gb
,
model_lb
,
mask
,
save_preliminary
=
True
)
recon_masks
[
i
]
=
mask_recon_grid
masks
[
i
]
=
mask
[
0
]
diffs
[
i
]
=
diff
prec_gbs
[
i
]
=
prec_gb
prec_lbs
[
i
]
=
prec_lb
complexities
[
i
]
=
complexity
sort_idx
=
np
.
argsort
(
np
.
array
(
complexities
))
masks_sorted
=
masks
.
numpy
()[
sort_idx
]
recon_masks_sorted
=
recon_masks
.
numpy
()[
sort_idx
]
group_labels
=
[
"
lte_0
"
,
"
gt_0_lte0.05
"
,
"
gt_0.05
"
]
bin_edges
=
[
-
np
.
inf
,
0.0
,
0.05
,
np
.
inf
]
bins
=
np
.
digitize
(
diffs
,
bins
=
bin_edges
,
right
=
True
)
for
i
in
range
(
bins
.
min
(),
bins
.
max
()
+
1
):
bin_idx
=
bins
==
i
binned_prec_gb
=
prec_gbs
[
bin_idx
]
prec_mean
=
binned_prec_gb
.
mean
()
prec_idx
=
prec_gbs
>
prec_mean
binned_masks_high
=
recon_masks
[
bin_idx
&
prec_idx
]
binned_masks_low
=
recon_masks
[
bin_idx
&
~
prec_idx
]
save_image
(
binned_masks_high
,
f
"
shape_complexity/results/diff_
{
group_labels
[
i
-
1
]
}
_high.png
"
,
padding
=
10
,
)
save_image
(
binned_masks_low
,
f
"
shape_complexity/results/diff_
{
group_labels
[
i
-
1
]
}
_low.png
"
,
padding
=
10
,
)
diff_sort_idx
=
np
.
argsort
(
diffs
)
fig
,
ax1
=
plt
.
subplots
()
ax2
=
ax1
.
twinx
()
ax1
.
plot
(
np
.
arange
(
len
(
prec_lbs
)),
np
.
array
(
prec_lbs
)[
diff_sort_idx
],
label
=
f
"
bottleneck
{
model_lb
.
bottleneck
}
"
,
)
ax1
.
plot
(
np
.
arange
(
len
(
prec_gbs
)),
np
.
array
(
prec_gbs
)[
diff_sort_idx
],
label
=
f
"
bottleneck
{
model_gb
.
bottleneck
}
"
,
)
ax2
.
plot
(
np
.
arange
(
len
(
diffs
)),
np
.
sort
(
diffs
),
color
=
"
red
"
,
label
=
"
prec difference (H - L)
"
,
)
ax1
.
legend
(
loc
=
"
lower left
"
)
ax2
.
legend
(
loc
=
"
lower right
"
)
ax1
.
set_ylabel
(
"
precision
"
)
ax2
.
set_ylabel
(
"
prec difference (H-L)
"
)
ax1
.
set_xlabel
(
"
image
"
)
plt
.
savefig
(
"
shape_complexity/results/prec_plot.png
"
)
plt
.
tight_layout
(
pad
=
2
)
plt
.
clf
()
fig
=
plot_samples
(
recon_masks_sorted
,
complexities
[
sort_idx
])
fig
.
savefig
(
"
shape_complexity/results/abs_recon.png
"
)
plt
.
close
(
fig
)
fig
=
plot_samples
(
masks_sorted
,
complexities
[
sort_idx
])
fig
.
savefig
(
"
shape_complexity/results/abs.png
"
)
plt
.
close
(
fig
)
LR
=
1e-3
...
...
@@ -530,7 +757,7 @@ LOAD_PRETRAINED = True
def
main
():
bottlenecks
=
[
2
,
4
,
8
,
16
]
models
=
{
i
:
VAE
(
bottleneck
=
i
).
to
(
device
)
for
i
in
bottlenecks
}
models
=
{
i
:
CONV
VAE
(
bottleneck
=
i
).
to
(
device
)
for
i
in
bottlenecks
}
optimizers
=
{
i
:
Adam
(
model
.
parameters
(),
lr
=
LR
)
for
i
,
model
in
models
.
items
()}
data_loader
,
dataset
=
load_data
()
...
...
@@ -538,7 +765,7 @@ def main():
if
LOAD_PRETRAINED
:
for
i
,
model
in
models
.
items
():
model
.
load_state_dict
(
torch
.
load
(
f
"
shape_complexity/trained/VAE_
{
i
}
_split_data.pth
"
)
torch
.
load
(
f
"
shape_complexity/trained/
CONV
VAE_
{
i
}
_split_data.pth
"
)
)
else
:
for
epoch
in
range
(
EPOCHS
):
...
...
@@ -550,10 +777,13 @@ def main():
test
(
epoch
,
models
=
list
(
models
.
values
()),
dataset
=
dataset
)
for
bn
in
bottlenecks
:
if
not
os
.
path
.
exists
(
"
trained
"
):
os
.
makedirs
(
"
trained
"
)
if
not
os
.
path
.
exists
(
"
shape_complexity/
trained
"
):
os
.
makedirs
(
"
shape_complexity/
trained
"
)
torch
.
save
(
models
[
bn
].
state_dict
(),
f
"
trained/VAE_
{
bn
}
_split_data.pth
"
)
torch
.
save
(
models
[
bn
].
state_dict
(),
f
"
shape_complexity/trained/CONVVAE_
{
bn
}
_split_data.pth
"
,
)
bn_gt
=
16
bn_lt
=
8
...
...
@@ -572,10 +802,20 @@ def main():
sampler
=
RandomSampler
(
dataset
,
replacement
=
True
,
num_samples
=
400
)
data_loader
=
DataLoader
(
dataset
,
batch_size
=
1
,
sampler
=
sampler
)
visualize_sort_fixed
(
data_loader
,
models
[
bn_gt
],
models
[
bn_lt
])
fig
=
visualize_sort_mean
(
data_loader
,
models
[
bn_gt
])
visualize_sort_group
(
data_loader
,
models
[
bn_gt
],
models
[
bn_lt
])
# visualize_sort_fixed(data_loader, models[bn_gt], models[bn_lt])
fig
,
fig_recon
=
visualize_sort_mean
(
data_loader
,
models
[
bn_gt
])
fig
.
savefig
(
f
"
shape_complexity/results/sort_mean_bn
{
bn_gt
}
.png
"
)
fig_recon
.
savefig
(
f
"
shape_complexity/results/recon_sort_mean_bn
{
bn_gt
}
.png
"
)
plt
.
close
(
fig
)
plt
.
close
(
fig_recon
)
fig
,
fig_recon
=
visualize_sort_diff
(
data_loader
,
models
[
bn_gt
],
models
[
bn_lt
])
fig
.
savefig
(
f
"
shape_complexity/results/sort_diff_bn
{
bn_gt
}
_bn
{
bn_lt
}
.png
"
)
fig_recon
.
savefig
(
f
"
shape_complexity/results/recon_sort_diff_bn
{
bn_gt
}
_bn
{
bn_lt
}
.png
"
)
plt
.
close
(
fig
)
plt
.
close
(
fig_recon
)
if
__name__
==
"
__main__
"
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment