Skip to content
Snippets Groups Projects
Commit 47544547 authored by Olivier Bertrand's avatar Olivier Bertrand
Browse files

Add samples

These files have been used for a presentation
They will be place in a tutorial or default like function to faciliate running model on world
parent ea9da98f
No related branches found
No related tags found
No related merge requests found
Showing
with 193791 additions and 0 deletions
%% Cell type:code id: tags:
``` python
import networkx as nx
import numpy as np
```
%% Cell type:code id: tags:
``` python
graph_nodes = range(25)
graph_edges = list()
for snode, enode in zip(graph_nodes[:11],
np.roll(graph_nodes[:11], 1)):
graph_edges.append((snode, enode))
for snode, enode in zip(graph_nodes[11:],
np.roll(graph_nodes[11:], 1)):
graph_edges.append((snode, enode))
pos = dict()
x = np.linspace(-1,1,5)
y = np.linspace(-1,1,5)
[mx,my]=np.meshgrid(x,y)
mx = mx.flatten()
my = my.flatten()
i = 0
for i in graph_nodes:
pos[i]=[mx[i], my[i]]
graph = nx.DiGraph()
graph.add_nodes_from(graph_nodes)
#graph.add_edges_from(graph_edges)
```
%% Cell type:code id: tags:
``` python
%matplotlib inline
import string
labels = dict()
for i,s in enumerate(string.ascii_uppercase[:len(graph_nodes)]):
labels[i]=s
nx.draw(graph,labels=labels,node_color='white',pos=pos)
```
%% Output
%% Cell type:code id: tags:
``` python
pos
```
%% Output
{0: [-1.0, -1.0],
1: [-0.5, -1.0],
2: [0.0, -1.0],
3: [0.5, -1.0],
4: [1.0, -1.0],
5: [-1.0, -0.5],
6: [-0.5, -0.5],
7: [0.0, -0.5],
8: [0.5, -0.5],
9: [1.0, -0.5],
10: [-1.0, 0.0],
11: [-0.5, 0.0],
12: [0.0, 0.0],
13: [0.5, 0.0],
14: [1.0, 0.0],
15: [-1.0, 0.5],
16: [-0.5, 0.5],
17: [0.0, 0.5],
18: [0.5, 0.5],
19: [1.0, 0.5],
20: [-1.0, 1.0],
21: [-0.5, 1.0],
22: [0.0, 1.0],
23: [0.5, 1.0],
24: [1.0, 1.0]}
%% Cell type:code id: tags:
``` python
pos
```
%% Output
{0: array([ 0.67713888, -0.54708367]),
1: array([ 0.80286012, -0.21521721]),
2: array([ 0.82999897, 0.10611472]),
3: array([ 0.6961206 , 0.29154782]),
4: array([ 0.73494093, 0.19213574]),
5: array([ 0.65684106, 0.06183021]),
6: array([ 0.64464326, -0.09805064]),
7: array([ 0.57452293, -0.27745012]),
8: array([ 0.47607059, -0.45805932]),
9: array([ 0.39641685, -0.6544649 ]),
10: array([ 0.49295776, -0.8057698 ]),
11: array([-0.58315298, 0.5926934 ]),
12: array([-0.40911029, 0.46421966]),
13: array([-0.40376733, 0.18834137]),
14: array([-0.48770361, -0.06679829]),
15: array([-0.62684662, -0.27585655]),
16: array([-0.45329037, -0.26329985]),
17: array([-0.27263802, -0.07977146]),
18: array([-0.11743287, 0.13464326]),
19: array([-0.04559407, 0.37108798]),
20: array([-0.33623618, 0.32683446]),
21: array([-0.59719043, 0.19261458]),
22: array([-0.81371306, 0.12269118]),
23: array([-1. , 0.2219939]),
24: array([-0.83583613, 0.47507351])}
%% Cell type:code id: tags:
``` python
```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import pkg_resources
from navipy.database import DataBaseLoad
from navipy.processing.pcode import apcv
from navipy.moving.agent import GraphAgent
from navipy import Brain
# 0) Define a class heriting from Brain
class ASVBrain(Brain):
def __init__(self, renderer=None, channel=0):
Brain.__init__(self,renderer=renderer)
# Init memory
locid = mydb.posorients[(mydb.posorients.x==0) & (mydb.posorients.y==0)].index[0]
posorient = mydb.posorients.loc[locid, :]
self.update(posorient)
self.channel = channel
self.memory = self.asv()
def asv(self):
if self.channel >3:
return apcv(1/self.vision.scene,
self.vision.viewing_directions)[..., 3,:]
else:
return apcv(self.vision.scene,
self.vision.viewing_directions)[..., self.channel,:]
def velocity(self):
homing_vector = self.memory - self.asv()
homing_vector = np.squeeze(homing_vector)
velocity = pd.Series(data=0,
index=['dx', 'dy', 'dz',
'dalpha_0', 'dalpha_1', 'dalpha_2'])
velocity[['dx', 'dy', 'dz']] = homing_vector
return velocity
# 1) Connect to the database
mydb_filename = '/home/bolirev/database.db'
mydb = DataBaseLoad(mydb_filename)
for channel in range(5):
mybrain = ASVBrain(renderer=mydb, channel=channel)
# Create a grid agent
my_agent = GraphAgent(mybrain)
attractors = my_agent.find_attractors()
print(attractors)
f, axarr = plt.subplots(1, 1, figsize=(10, 10))
axarr.plot(trajectory.x, trajectory.y)
gridtoplot = mydb.posorients[(mydb.posorients.x>-1) &
(mydb.posorients.y>-1) &
(mydb.posorients.x<1) &
(mydb.posorients.y<1)]
axarr.plot([0],[0],'ro')
axarr.plot(gridtoplot.x,gridtoplot.y,'.',color='gray')
axarr.set_xlim([-10,10])
axarr.set_ylim([-10,10])
f.show()
f.savefig('plots/asv_homing_grid_channel_{}.svg'.format(channel))
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import pkg_resources
from navipy.database import DataBaseLoad
from navipy.processing.pcode import apcv
from navipy.moving.agent import GridAgent
from navipy import Brain
# 0) Define a class heriting from Brain
class ASVBrain(Brain):
def __init__(self, renderer=None, channel=0):
Brain.__init__(self,renderer=renderer)
# Init memory
locid = mydb.posorients[(mydb.posorients.x==0) & (mydb.posorients.y==0)].index[0]
posorient = mydb.posorients.loc[locid, :]
self.update(posorient)
self.channel = channel
self.memory = self.asv()
def asv(self):
if self.channel >3:
return apcv(1/self.vision.scene,
self.vision.viewing_directions)[..., 3,:]
else:
return apcv(self.vision.scene,
self.vision.viewing_directions)[..., self.channel,:]
def velocity(self):
homing_vector = self.memory - self.asv()
homing_vector = np.squeeze(homing_vector)
velocity = pd.Series(data=0,
index=['dx', 'dy', 'dz',
'dalpha_0', 'dalpha_1', 'dalpha_2'])
velocity[['dx', 'dy', 'dz']] = homing_vector
return velocity
# 1) Connect to the database
mydb_filename = '/home/bolirev/database.db'
mydb = DataBaseLoad(mydb_filename)
for channel in range(5):
mybrain = ASVBrain(renderer=mydb, channel=channel)
# Create a grid agent
my_agent = GridAgent(mybrain)
# init position
rowid = mydb.posorients[(mydb.posorients.x==-5) & (mydb.posorients.y==-5)].index[0]
initpos = mybrain.posorients.loc[rowid]
my_agent.posorient = initpos
# Mode of motion
mode_of_motion = dict()
mode_of_motion['mode'] = 'on_cubic_grid'
mode_of_motion['param'] = dict()
mode_of_motion['param']['grid_spacing'] = 1
my_agent.mode_of_motion = mode_of_motion
# Run
max_nstep = 100
trajectory = my_agent.fly(max_nstep, return_tra=True)
f, axarr = plt.subplots(1, 1, figsize=(10, 10))
axarr.plot(trajectory.x, trajectory.y)
gridtoplot = mydb.posorients[(mydb.posorients.x>-1) &
(mydb.posorients.y>-1) &
(mydb.posorients.x<1) &
(mydb.posorients.y<1)]
axarr.plot([0],[0],'ro')
axarr.plot(gridtoplot.x,gridtoplot.y,'.',color='gray')
axarr.set_xlim([-10,10])
axarr.set_ylim([-10,10])
f.show()
f.savefig('plots/asv_homing_grid_channel_{}.svg'.format(channel))
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
samples/plots/asv_homing_grid_channel_0.png

19.8 KiB

This diff is collapsed.
samples/plots/asv_homing_grid_channel_1.png

4.89 KiB

This diff is collapsed.
samples/plots/asv_homing_grid_channel_2.png

4.05 KiB

This diff is collapsed.
samples/plots/asv_homing_grid_channel_3.png

2.99 KiB

This diff is collapsed.
samples/plots/asv_homing_grid_channel_4.png

3.54 KiB

This diff is collapsed.
This diff is collapsed.
File added
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment