Skip to content
Snippets Groups Projects
Commit 6961ea51 authored by Olivier Bertrand's avatar Olivier Bertrand
Browse files

Merge branch 'charlotte' into develop

parents 21c0c226 ca7f6dea
No related branches found
No related tags found
No related merge requests found
import numpy as np
import pandas as pd
def ird(ref_svp,scene):
"""
compute the rotational image difference between a reference memorized snapshot (SVP) and actual position
: scene
: ref_svp: snapshot memorized reference (denormalized image)
: return: a Serie with angle and image rotation difference value
: typer:pd.Series
"""
rms=pd.Series(index=['x','y','z','irdf','angle',])
angles=range(0,ref_svp.shape[1]+1,1)
# for this image do the rotation and found the minimum
image_rot=pd.Series(index=angles)
image_rot.name='irdf'
for ang in angles:
# rotation of the image for one degree angle
out = np.roll(scene,ang,1)
# difference between view position and reference snapshot
diff_rot=out-ref_svp
# calculate Root Mean Square
diff_val=np.sqrt(np.mean(diff_rot[:,:,:3]**2))
image_rot[ang]=diff_val
rms['angle']=image_rot.argmin()
rms['irdf']=image_rot.min()
rms['x']=rms.irdf*np.cos(rms.angle)
rms['y']=rms.irdf*np.sin(rms.angle)
rms['z']=np.nan
return rms
def weighted_ird(scene,mem_scenes):
'''Return an homing vector direction based on an Image rotational difference weighted between some reference snapshots
: param scene: actual scene , np.array
: param mem_scenes: list of set of views
: returns: dx,dy,dz,dyaw,dpitch,droll.
: rtypes : pd.Series
'''
df_svp= pd.DataFrame(index=range(0,len(mem_scenes)),columns=['irdf','angle'])
for i in range(0,len(mem_scenes)):
df_svp.loc[i]=ird(mem_scenes[i],scene)
best_svp=pd.Series(index=['svp_nb','irdf'])
best_svp.loc['svp_nb']=np.argmin(df_svp.irdf)
best_svp['irdf']=min(df_svp.irdf)
# Take the best svp irdf and make the ratio for each others that gives the weighted irdf
w_svp=pd.DataFrame(index=df_svp.index,columns=['w'])
for i in df_svp.index :
w=best_svp['irdf']/df_svp.irdf[i]
w_svp.loc[i,['w']]=w
# Weighting of the vector direction based on circular statistics
Heading=pd.Series(data=complex())
j=complex(0,1)
H=list()
for i in df_svp.index:
t=w_svp.loc[i]*np.exp(np.deg2rad(df_svp.loc[i,['angle']][0])*j)
H.append(t)
Heading=np.sum(H)
Hdeg=np.angle(Heading, deg=True)
move_vector=pd.Series(index=['dx','dy','dz','dyaw','dpitch','droll'])
move_vector['dx']=np.cos((Hdeg)*np.pi/180)
move_vector['dy']=np.sin((Hdeg)*np.pi/180)
move_vector['dz']=0
move_vector['dyaw','dpitch','droll']=[np.nan,np.nan,np.nan]
return move_vector
def nposorient_around_ref(mydb,position_df,ref_pos,nb_snapshot,radius,blender_view):
'''Return set of views around and oriented towards memorized location
:param mydb: Database environment
:param position_df: dataframe with the positions of the grid
:param ref_pos: df with x, y and z position of the reference snapshot
:param nb_snapshot: number of wanted set of views (multiple of 2)
:param radius: distance from memorized location to take snapshots
:param blender_view: viewing axis camera id y=90, if x=0
:returns: list of reoriented image array, snaphots positions
:rtypes: array of np.array, pd.DataFrame
'''
svp_all=pd.DataFrame(columns=['x','y','z','frame'])
nsvp_image=[]
# angle of rotation
ang_deg=360/nb_snapshot
ang=np.deg2rad(ang_deg)
# make the different view
for i in range(0,nb_snapshot):
x=ref_pos.x+radius*np.cos(ang*i)
y=ref_pos.y+radius*np.sin(ang*i)
z=ref_pos.z
svp_frame=pd.Series(index=['frame','x','y','z'])
distance_arr=pd.Series(index=position_df.index)
for index, pos in position_df.dropna().iterrows():
distance = (pos.x-x)**2
distance += (pos.y-y)**2
distance += (pos.z-z)**2
distance_arr[index]=distance
svp_frame.frame=int(distance_arr.dropna().argmin())
svp_frame.x=position_df.x[svp_frame.frame]
svp_frame.y=position_df.y[svp_frame.frame]
svp_frame.z=position_df.z[svp_frame.frame]
svp_all.loc[i]=[svp_frame.x,svp_frame.y,svp_frame.z,int(svp_frame.frame)]
reoriented_mem=[]
rot=list()
for i,j in svp_all.iterrows():
ide=int(j.frame)
image=mydb.scene(rowid=ide)
alpha=np.floor(np.rad2deg(np.arctan2((ref_pos.y-j.y),(ref_pos.x-j.x))))
alpha=alpha+blender_view##because y view on blender
rot.append(alpha)
alpha=int(alpha)
svp_reorient=np.roll(image,alpha,1)
reoriented_mem.append(svp_reorient)
return reoriented_mem,svp_all
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment