Newer
Older
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from primo.core import BayesNet
from primo.reasoning import DiscreteNode
from primo.reasoning.factorelemination import EasiestFactorElimination
from primo.reasoning.factorelemination import FactorTreeFactory
import numpy
bn = BayesNet()
burglary = DiscreteNode("Burglary", ["Intruder","Safe"])
alarm = DiscreteNode("Alarm", ["Ringing", "Silent"])
earthquake = DiscreteNode("Earthquake", ["Shaking", "Calm"])
john_calls = DiscreteNode("John calls", ["Calling", "Not Calling"])
baum_calls = DiscreteNode("Baum calls", ["Calling", "Not Calling"])
bn.add_node(burglary)
bn.add_node(alarm)
bn.add_node(earthquake)
bn.add_node(john_calls)
bn.add_node(baum_calls)
bn.add_edge(burglary,alarm)
bn.add_edge(earthquake, alarm)
bn.add_edge(alarm, john_calls)
bn.add_edge(alarm, baum_calls)
earthquake.set_probability_table(cpt_earthquake,[earthquake])
alarm.set_probability(0.95,[(alarm,"Ringing"),(burglary,"Intruder"),(earthquake,"Shaking")])
alarm.set_probability(0.05,[(alarm,"Silent"),(burglary,"Intruder"),(earthquake,"Shaking")])
alarm.set_probability(0.29,[(alarm,"Ringing"),(burglary,"Safe"),(earthquake,"Shaking")])
alarm.set_probability(0.71,[(alarm,"Silent"),(burglary,"Safe"),(earthquake,"Shaking")])
alarm.set_probability(0.94,[(alarm,"Ringing"),(burglary,"Intruder"),(earthquake,"Calm")])
alarm.set_probability(0.06,[(alarm,"Silent"),(burglary,"Intruder"),(earthquake,"Calm")])
alarm.set_probability(0.001,[(alarm,"Ringing"),(burglary,"Safe"),(earthquake,"Calm")])
alarm.set_probability(0.999,[(alarm,"Silent"),(burglary,"Safe"),(earthquake,"Calm")])
baum_calls.set_probability(0.9,[(alarm,"Ringing"),(baum_calls,"Calling")])
baum_calls.set_probability(0.1,[(alarm,"Ringing"),(baum_calls,"Not Calling")])
baum_calls.set_probability(0.05,[(alarm,"Silent"),(baum_calls,"Calling")])
baum_calls.set_probability(0.95,[(alarm,"Silent"),(baum_calls,"Not Calling")])
john_calls.set_probability(0.7,[(alarm,"Ringing"),(john_calls,"Calling")])
john_calls.set_probability(0.3,[(alarm,"Ringing"),(john_calls,"Not Calling")])
john_calls.set_probability(0.01,[(alarm,"Silent"),(john_calls,"Calling")])
john_calls.set_probability(0.99,[(alarm,"Silent"),(john_calls,"Not Calling")])
#first Elimination:
fe = EasiestFactorElimination()
fe.set_BayesNet(bn)
#print "Alarm: " + str(fe.calculate_PriorMarginal([alarm]))
#print "John_Calls: " + str(fe.calculate_PriorMarginal([john_calls]))
#print "Baum_Calls: " + str(fe.calculate_PriorMarginal([baum_calls]))
#print "Burglary: " + str(fe.calculate_PriorMarginal([burglary]))
#print "Earthquake: " + str(fe.calculate_PriorMarginal([earthquake]))
#print "PoE Earthquake: " + str(fe.calculate_PoE([(earthquake, "Calm")]))
#print "PoE BaumCalls is Calling: " + str(fe.calculate_PoE([(baum_calls, "Calling")]))
#print "Posterior of earthquake : " + str(fe.calculate_PosteriorMarginal([burglary],[(alarm, "Ringing"),(earthquake, "Calm")]))
factorTreeFactory = FactorTreeFactory()
factorTree = factorTreeFactory.create_random_factortree(bn)
print "AlarmFT: " + str(factorTree.calculate_marginal([alarm]))
#for n,nbrs in factorTree.graph.adjacency_iter():
# for nbr,eattr in nbrs.items():
# data=eattr['seperator']
# #print str(data)
# print str(n) + " -> " + str(nbr)
# for d in data:
# print str(d)