Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
# -*- coding: utf-8 -*-
# Copyright 2012 Manuel Baum and Denis John
# Contact:
# djohn@techfak.uni-bielefeld.de
# mbaum@techfak.uni-bielefeld.de
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import random
import itertools
import copy
import re
import numpy
import xml.dom.minidom as dom
def weightedRandom(weights):
counter = random.random() * sum(weights)
for i,w in enumerate(weights):
counter -= w
if counter <=0:
return i
# Klasse Directed Graph
# Diese Klasse stellt einen allgemeinen Graphen dar, der noch nicht unbedingt
# ein Bayesnetz sein muss
class DirectedGraph(dict):
def __init__(self):
self.nodeFactory = NodeFactory()
def insertNode(self,nodeName):
print "Inserting Node: "+nodeName
if nodeName in self:
raise Exception('Name ' + nodeName + ' already exists!')
self[nodeName] = self.nodeFactory.node()
def removeNode(self,nodeName):
if not nodeName in self:
raise Exception('Name ' + nodeName + ' does not exists!')
children=self[nodeName].children
parents=self[nodeName].parents
map(lambda x: self.removeEdge(nodeName,x),children)
map(lambda x: self.removeEdge(x,nodeName),parents)
del self[nodeName]
def calculatePositions(self):
q=[]
p = []
alreadySeen=[]
xStep = 150
yStep = 100
xPos = 0
yPos = 0
for k in self:
if not self.hasParent(k):
q.append(k)
alreadySeen.append(k)
while q:
p = q
q = []
yPos += yStep
xPos = xStep
while p:
n = p.pop()
self[n].position = (xPos,yPos)
xPos += xStep
for child in self[n].children:
if not child in alreadySeen:
q.append(child)
alreadySeen.append(child)
def insertEdge(self,parentName,childName):
print "Inserting Edge: "+parentName+" -> "+childName
if self.existsEdge(parentName, childName):
raise Exception('An Edge already exists from '+parentName+' to '+childName)
self[parentName].children.append(childName)
self[childName].parents.append(parentName)
if not self.isAcyclic():
self.removeEdge(parentName,childName)
raise Exception('This BayesNet becomes cyclic by inserting Edge '+parentName+"->"+childName)
def existsEdge(self, parentName, childName):
return childName in self[parentName].children
def removeEdge(self,parentName,childName):
self[parentName].children.remove(childName)
self[childName].parents.remove(parentName)
def removeEdgeUnsafe(self,parentName,childName):
self[parentName].children.remove(childName)
self[childName].parents.remove(parentName)
def insertEdgeUnsafe(self,parentName,childName):
if self.existsEdge(parentName, childName):
raise Exception('An Edge already exists from '+parentName+' to '+childName)
self[parentName].children.append(childName)
self[childName].parents.append(parentName)
def isAcyclic(self):
graph = copy.deepcopy(self)
q=[]
for k in graph:
if not graph.hasParent(k):
q.append(k)
while q:
n = q.pop()
for child in graph[n].children[:]:
graph.removeEdge(n,child)
if not graph.hasParent(child):
q.append(child)
for n in graph.values():
if n.children != []:
return False
return True
def hasParent(self, name):
node = self[name]
return node.parents
def __str__(self):
word='digraph G {\n'
for n in self.keys():
word+=str(n)+';\n'
for child in self[n].children:
word+=str(n)+'->'+str(child)+';\n'
word += '}'
return word
def writeToFile(self,filepath):
FILE = open(filepath,'w')
FILE.write(self.__str__())
def readFromFile(self, filepath):
with open(filepath,'r') as FILE:
string = FILE.read()
#whitespace entfernen
string = re.sub(r'\s', '', string)
#auf die geschweiften klammern zurechtschneiden
strings=string.split('{')
strings=strings[1].split('}')
#die einzelnen edges/nodes splitten
strings=strings[0].split(';')
#mindestens nach dem letzten semikolon bleibt ein '' übrig
while '' in strings:
strings.remove('')
for s in strings:
subs = s.split("->")
if not subs[0] in self.keys():
self.insertNode(subs[0])
if len(subs) > 1:
if not subs[1] in self.keys():
self.insertNode(subs[1])
self.insertEdge(subs[0],subs[1])
# Diese Klasse wird in einen DirectedGraph geladen
class NodeFactory(object):
def node(self):
return Node()
class RandomNodeFactory(object):
def node(self):
return RandomNode()
class Node(object):
def __init__(self):
self.parents = []
self.children = []
self.position = (0,0)
class RandomNode(Node):
def __init__(self):
Node.__init__(self)
#The CPT is a numpy.array. The first dimension (dim: 0) contains the
#values of the node itself. The following dimensions reflect the values
#of the parent nodes
self.cpt = numpy.array(0)
self.values = []
def normalize(self):
sumMat = numpy.sum(self.cpt,0)
if sumMat.shape == () and sumMat == 0:
self.cpt = numpy.ones(self.cpt.shape)
sumMat = numpy.sum(self.cpt,0)
elif not sumMat.shape == ():
addMat = numpy.zeros(sumMat.shape)
addMat[sumMat==0] += 1
self.cpt += addMat
sumMat = numpy.sum(self.cpt,0)
#finally normalize
self.cpt /= sumMat
def uniformize(self):
self.cpt = numpy.ones(self.cpt.shape)
self.normalize()
def setCpt(self, newCpt):
if newCpt.shape == self.cpt.shape:
self.cpt = newCpt
self.normalize()
else:
raise Exception('Can not set new values for this Cpt, as the new Cpt has wrong dimensionality.')
def appendCptZeroSubmatrix(self, dimension):
shape = self.cpt.shape
if shape == ():
newCpt = numpy.zeros((1))
else:
shapeOfAppendix=(shape[:dimension])+(1,)+(shape[dimension+1:])
newCpt = numpy.concatenate((self.cpt,numpy.zeros(shapeOfAppendix)),dimension)
self.cpt = newCpt
def deleteCptLine(self, dim, idx):
if idx==0:
B,C=numpy.split(self.cpt,[idx+1],axis=dim)
self.cpt=C
elif idx==self.cpt.shape[dim]-1:
A,B=numpy.split(self.cpt,[idx],axis=dim)
self.cpt=A
else:
A,B,C = numpy.split(self.cpt,[idx,idx+1],axis=dim)
self.cpt = numpy.concatenate((A,C),axis = dim)
def getXMLTag(self,nodeName):
tag_var = dom.Element("VARIABLE")
tag_own = dom.Element("NAME")
tag_pos = dom.Element("PROPERTY")
tag_var.setAttribute("TYPE","nature")
txt_name = dom.Text()
txt_name.data = str(nodeName)
tag_var.appendChild(tag_own)
tag_own.appendChild(txt_name)
for val in self.values:
tag_val = dom.Element("OUTCOME")
txt_val = dom.Text()
txt_val.data = str(val)
tag_val.appendChild(txt_val)
tag_var.appendChild(tag_val)
txt_pos = dom.Text()
x,y = self.position
txt_pos.data = "position = (" + str(x) + ", " + str(y) + ")"
tag_pos.appendChild(txt_pos)
tag_var.appendChild(tag_pos)
return tag_var
### Functions for Inference
def setEvidence(self,evidenceName):
idx = self.values.index(evidenceName)
newCpt = numpy.zeros(self.cpt.shape)
tmpCpt = self.cpt[idx]
newCpt[idx] = tmpCpt
self.cpt = newCpt
def rollBackParent(self,parentName):
if len(self.parents) == self.cpt.ndim:
idx = self.parents.index(parentName)
else:
idx = self.parents.index(parentName) +1
self.cpt = numpy.rollaxis(self.cpt,idx,self.cpt.ndim)
self.parents.remove(parentName)
self.parents.append(parentName)
def rollFrontParent(self,parentName):
if len(self.parents) == self.cpt.ndim:
idx = self.parents.index(parentName)
else:
idx = self.parents.index(parentName) +1
self.cpt = numpy.rollaxis(self.cpt,idx)
self.parents.remove(parentName)
self.parents.insert(0,parentName)
class BayesNet(DirectedGraph):
def __init__(self):
self.nodeFactory=RandomNodeFactory()
def insertValue(self, nodeName, value):
print "Inserting Value: "+value+" in "+nodeName
node = self[nodeName]
if not value in node.values:
node.values.append(value)
node.appendCptZeroSubmatrix(0)
#node.normalize()
#node.normalize()
for child in node.children:
dim,idx = self.cptDimensionIndex(child,nodeName,value)
self[child].appendCptZeroSubmatrix(dim)
#self[child].normalize()
else:
raise Exception('Cannot insert the value '+value+" in the RandomNode "+name+" because a value with this name already exists in this Node")
def removeValue(self, nodeName, value):
node = self[nodeName]
if not value in node.values:
raise Exception('Cannot delete the value '+value+" in the RandomNode "+nodeName+" because it does not exists in this Node")
elif len(node.values) <= 1:
raise Exception('Cannot delete the value '+value+" in the RandomNode "+nodeName+" because it is the last value for this Node.")
else:
#Handle the CPTs of the Children
for child in node.children:
matDim, idx = self.cptDimensionIndex(child, nodeName, value)
self[child].deleteCptLine(matDim, idx)
#Handle the CPT of this Node
idx = node.values.index(value)
node.values.remove(value)
node.deleteCptLine(0,idx)
#node.normalize()
def insertEdge(self, fromName, toName):
super(BayesNet, self).insertEdge(fromName,toName)
node = self[toName]
ax = node.cpt.ndim
node.cpt=numpy.expand_dims(node.cpt,ax)
node.cpt=numpy.repeat(node.cpt,len(self[fromName].values),axis = ax)
#node.normalize()
def insertNode(self, name, values=["TRUE"]):
super(BayesNet, self).insertNode(name)
for value in values:
self.insertValue(name, value)
def cptDimension(self, nodeName):
node = self[nodeName]
dim=[len(node.values)]
for parent in node.parents:
dim.append(len(self[parent].values))
return dim
#This Function returns the MatrixDimension and the Index in this
#dimension at the which the specified valueName is located,
#this is needed at least for removeValue
def cptDimensionIndex(self, nodeName, parentName, valueName):
matDim = 1 + self[nodeName].parents.index(parentName)
idx = self[parentName].values.index(valueName)
return (matDim, idx)
def generate_XML(self,netName):
print "Generate XML for: " + netName
self.calculatePositions()
mainNode = dom.Document()
tag_bif = mainNode.createElement("BIF")
tag_net = mainNode.createElement("NETWORK")
tag_bif.setAttribute("VERSION","0.3")
mainNode.appendChild(tag_bif)
tag_bif.appendChild(tag_net)
tag_name = dom.Element("NAME")
text = dom.Text()
text.data = str(netName)
tag_name.appendChild(text)
tag_net.appendChild(tag_name)
for nodeName in self.keys():
curNode = self[nodeName]
node_tag = curNode.getXMLTag(nodeName)
tag_net.appendChild(node_tag)
#Generate CPTs
for nodeName in self.keys():
curNode = self[nodeName]
tag_def = dom.Element("DEFINITION")
tag_for = dom.Element("FOR")
txt_for = dom.Text()
txt_for.data = str(nodeName)
tag_for.appendChild(txt_for)
tag_def.appendChild(tag_for)
for parent in reversed(curNode.parents):
tag_par = dom.Element("GIVEN")
txt_par = dom.Text()
txt_par.data = str(parent)
tag_par.appendChild(txt_par)
tag_def.appendChild(tag_par)
tag_cpt = dom.Element("TABLE")
txt_cpt = dom.Text()
txt = ""
for elem in curNode.cpt.T.flat:
txt += str(elem) + " "
txt_cpt.data = txt
tag_cpt.appendChild(txt_cpt)
tag_def.appendChild(tag_cpt)
tag_net.appendChild(tag_def)
return mainNode
def normalize(self):
for nodeName in self:
self[nodeName].normalize()
def updateCpts(self):
for nodeName in self:
self.updateCpt(nodeName)
#### Inference Algorithms
#This function computes the prior marginal-distribution over a set of query-variables
def priorMarginal(self,queryVariables = []):
bn = copy.deepcopy(self)
#Assume all variables are of interest in case of [] as queryVariables
if(queryVariables == []):
queryVariables = bn.keys()
#Look at all Nodes in the BN
q = bn.keys()
while q:
curNodeName = q.pop()
curNode = bn[curNodeName]
#If this Node has no parents, it's children become potentially new
#unconditioned Variables when this node has been deleted
if len(curNode.parents) == 0:
q.extend(curNode.children)
bn.conditionElimination(curNodeName)
#Construct the Output as list of (nodename, node) pairs
returnList = []
for name in bn.keys():
if name in queryVariables:
returnList.append((name,bn[name].cpt))
return returnList
#This function removes edges to children of this node and eliminates the conditioning of the children-nodes on the specified one
def conditionElimination(self,nodeName):
node = self[nodeName]
#It is necessary, that this node has no parents, otherwise something has gone wrong
#Before this function has been called
if node.parents:
raise Exception("There shouldn't be a parent for this node at this time")
#In the CPT of each child, the values of this node are being marginalized out
for childName in node.children[:]:
childNode = self[childName]
childNode.rollBackParent(nodeName)
#Practically dot-product combines pointwise multiplication and summation over
#possible values of this node
childNode.cpt = numpy.dot(childNode.cpt,node.cpt)
self.removeEdgeUnsafe(nodeName,childName)
def probabilityOfEvidence(self,evidences = []):
bn = copy.deepcopy(self)
#First of all, we have to set the specified evidence in the bn
for evName,value in evidences:
if not evName in bn:
raise Exception("The node " + evName + " doesn't exist for calculating the probability of evidence")
elif not value in bn[evName].values:
raise Exception("The value " + value + " doesn't exist in node " + evName + " for calculating the probability of evidence")
bn[evName].setEvidence(value)
#Insert all nodes without parents in q
q = []
for k in bn:
if not bn.hasParent(k):
q.append(k)
#from these nodes go down recursively to the leaves of the DAG and eliminate upwards from there
for p in q:
bn.eliminateChildren(p)
#Finally multiply the partial results for divided graphs
result = 1
for k in bn:
result *= bn[k].cpt
return result
#This function recursively eliminates the children of this node
#and sums the different possible values of this node out too
def eliminateChildren(self,nodeName):
node = self[nodeName]
#Before we can eliminate this node, we will eliminate all of it's children
#recursively
for child in node.children:
self.eliminateChildren(child)
#Now that the values of the children have been summed out, we can
#combine their cpts and sum ourself out
self.uniteNodes(node.children[:],nodeName)
self.sumOutVariable(nodeName)
def sumOutVariable(self,nodeName):
node = self[nodeName]
#Check if summation is correct as we make expectations based on our bottom-up elimination of the DAG
if len(node.children) > 1:
raise Exception("sumOutVariable: The node has more than one child")
if len(node.parents) +1 < node.cpt.ndim:
raise Exception("sumOutVariable: The cpt of the node has the wrong number of dims")
if len(node.parents) == node.cpt.ndim:
#Already summed out, this happens if this node has multiple parents
return
#Trivial case: node has no children, just sum it's vector-shaped cpt
if len(node.children) == 0:
node.cpt = sum(node.cpt,0)
#Not so trivial case: node has children (necessarily only one as the childrens CPTs have already been combined into a single matrix)
else:
childName = node.children[0]
childNode = self[childName]
#combine the beliefs of the children nodes (already combined in one matrix) and our own cpt. This is done by dotwise multiplication and then summation over our own values.
node.cpt = numpy.rollaxis(node.cpt,0,node.cpt.ndim)
childNode.rollFrontParent(nodeName)
node.cpt = numpy.dot(node.cpt,childNode.cpt)
#Finally remove this nodes child and connect this node to the other parents of that child
self.removeEdgeUnsafe(nodeName,childName)
for p in childNode.parents:
self.insertEdgeUnsafe(p,nodeName)
self.removeNode(childName)
def uniteNodes(self,nodeList,parentName):
if not nodeList:
return
#Check if it is sensible to unite the given nodes
for nodeName in nodeList:
node = self[nodeName]
if not node.cpt.ndim == len(node.parents):
raise Exception("Unite Nodes: CptDim and Size parents aren't the same")
if not parentName in node.parents:
raise Exception("Unite Nodes: At least one node doesn't have the given parent")
#Iteratively unite all nodes with the first one, so all information is contained in one matrix
firstNode = nodeList.pop()
while nodeList:
curNode = nodeList.pop()
firstNode = self.uniteTwoNodes(firstNode,curNode,parentName)
def uniteTwoNodes(self,nodeName1,nodeName2,parentName):
node1 = self[nodeName1]
node2 = self[nodeName2]
idx1 = node1.parents.index(parentName)
idx2 = node2.parents.index(parentName)
#Roll parent to the front
node1.parents.remove(parentName)
node1.parents.insert(0,parentName)
node2.parents.remove(parentName)
node2.parents.insert(0,parentName)
#Roll parent to the front in the cpt
cpt1 = numpy.rollaxis(node1.cpt,idx1)
cpt2 = numpy.rollaxis(node2.cpt,idx2)
#The CPTS are being combined
node1.cpt = self.uniteCpts(cpt1,cpt2)
#Remove the second Node and redirect the edges from it's parents to the first node
self.removeEdgeUnsafe(parentName,nodeName2)
for p in node2.parents:
self.insertEdgeUnsafe(p,nodeName1)
self.removeNode(nodeName2)
def uniteCpts(self,cpt1,cpt2):
#Assuming the common dimension at zero
#New shape for new cpt
newShape = cpt2.shape[1:] + cpt1.shape
newCpt = numpy.ones(newShape)
ndim1 = cpt1.ndim
ndim2 = cpt2.ndim
#Insert Values of the first cpt
newCpt *= cpt1
#Rotate Axis so insertion of the values for cpt2 becomes a pointwise matrixdimension
newCpt = numpy.rollaxis(newCpt,ndim2-1,newCpt.ndim)
for i in range(ndim2-1):
newCpt = numpy.rollaxis(newCpt,0,newCpt.ndim)
newCpt *= cpt2
newCpt = numpy.rollaxis(newCpt,ndim1-1)
return newCpt
def mcmc(self, evidences, queries, times):
bn = copy.deepcopy(self)
#Evidence and NonEvidence Variables
eVariables = []
neVariables = []
#First of all, we have to set the specified evidence in the bn
for evName,value in evidences:
if not evName in bn:
raise Exception("The node " + evName + " doesn't exist in this BayesNet")
elif not value in bn[evName].values:
raise Exception("The value " + value + " doesn't exist in node " + evName + " in this BayesNet")
elif evName in queries:
raise Exception("The node " + evName + " is being queried although evidence has been provided for it.")
eVariables += [evName]
bn[evName].state=bn[evName].values.index(value)
#Get the non-evidence-variables
neVariables = [x for x in self.keys() if x not in eVariables]
#Insert the histograms into the non-evidence-nodes
for nodeName in neVariables:
node = bn[nodeName]
node.histogram = numpy.zeros(len(node.values))
node.state = random.randint(0,len(node.values)-1)
#Sample times times
for t in range(0,times):
for nodeName in neVariables:
node=bn[nodeName]
node.histogram[node.state]+=1
for nodeName in neVariables:
node = bn[nodeName]
#Extract the vector of probabilities according to the parent-states
prob = node.cpt
for parentDim,parentName in enumerate(node.parents):
parentState = bn[parentName].state
prob = prob.take([parentState],axis=parentDim+1)
prob = prob.flatten()
for childName in node.children:
child = bn[childName]
childProb = child.cpt
for parentDim,parentName in [(dim, name) for (dim,name) in enumerate(child.parents) if not name == nodeName]:
parentState = bn[parentName].state
childProb = childProb.take([parentState],axis=parentDim+1)
childProb = childProb.take([child.state],axis=0)
prob *= childProb.flatten() / numpy.sum(childProb.flatten())
prob /= numpy.sum(prob)
node.state = weightedRandom(prob)
ret = []
for nodeName,node in [(name, bn[name]) for name in queries]:
node.histogram /= numpy.sum(node.histogram)
ret += [(nodeName,node.histogram)]
return ret
def markovBlanket(self, nodeName):
node = self[nodeName]
blanket = node.parents + node.children
for child in node.children:
blanket += [p for p in child.parents if p not in blanket]
return blanket
bne = BayesNet()
# Nodes and Values
bne.insertNode("Earthquake")
bne.insertValue("Earthquake","FALSE")
bne.insertNode("Burglary")
bne.insertValue("Burglary","FALSE")
bne.insertNode("Alarm")
bne.insertValue("Alarm","FALSE")
bne.insertNode("JohnCalls")
bne.insertValue("JohnCalls","FALSE")
bne.insertNode("BaumCalls")
bne.insertValue("BaumCalls","FALSE")
#Edges
bne.insertEdge("Burglary","Alarm")
bne.insertEdge("Earthquake","Alarm")
bne.insertEdge("Alarm","JohnCalls")
bne.insertEdge("Alarm","BaumCalls")
#CPTs
bne["Burglary"].setCpt(numpy.array(\
[0.001 , 0.999]))
bne["Earthquake"].setCpt(numpy.array(\
[0.002 , 0.998]))
bne["Alarm"].setCpt(numpy.array(\
[[[ 0.95,0.94],\
[ 0.29,0.001]],\
[[ 0.05,0.06],\
[ 0.71,0.999]]]))
bne["BaumCalls"].setCpt(numpy.array(\
[[0.9,0.05],\
[0.1,0.95]]))
bne["JohnCalls"].setCpt(numpy.array(\
[[0.7,0.01],\
[0.3,0.99]]))
###Inference Algorithms
print "Probability of Evidence"
#print bne.probRec([("JohnCalls","TRUE"),("BaumCalls","TRUE")])
print bne.probabilityOfEvidence([("Earthquake","FALSE")])
print "Prior Marginal"
print bne.priorMarginal()
print "Posterior Marginal"
print bne.mcmc([("Alarm","TRUE"),("Earthquake","TRUE")],["JohnCalls"],10000)