Skip to content
Snippets Groups Projects
train_single_agent.py 4 KiB
Newer Older
from typing import Any

import wandb
from omegaconf import DictConfig, OmegaConf
from stable_baselines3 import A2C
from stable_baselines3 import DQN
from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import CallbackList, CheckpointCallback
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.vec_env import VecVideoRecorder
from wandb.integration.sb3 import WandbCallback

from gym_env import EnvGymWrapper
import hydra
from hydra.utils import instantiate


@hydra.main(version_base="1.3", config_path="config", config_name="rl_config")
def main(cfg: DictConfig):
    """
    trains an agent from scratch and saves the model to the specified path
    All configs are managed with hydra.
    """
    additional_configs: dict[str, Any] = OmegaConf.to_container(cfg.additional_configs, resolve=True)
    rl_logs: Path = Path(additional_configs["log_path"])
    rl_logs.mkdir(exist_ok=True)
    rl_agent_checkpoints: Path = rl_logs / Path(additional_configs["checkpoint_path"])
    rl_agent_checkpoints.mkdir(exist_ok=True)
    config: dict[str, Any] = OmegaConf.to_container(cfg.model, resolve=True)
    env_info: dict[str, Any] = OmegaConf.to_container(cfg.environment, resolve=True)
    debug: bool = additional_configs["debug_mode"]
    vec_env = additional_configs["vec_env"]
    number_envs_parallel = config["number_envs_parallel"]
    model_class = instantiate(cfg.model.model_type)
    data_to_log=dict(config, **env_info)
    if vec_env:
        env = make_vec_env(lambda: EnvGymWrapper(cfg), n_envs=number_envs_parallel)
    else:
        env = EnvGymWrapper(cfg)

    env.render_mode = additional_configs["render_mode"]
    if not debug:
        # also upload the environment config to W&B and all stable baselines3 hyperparams
        run = wandb.init(
            project=additional_configs["project_name"],
            sync_tensorboard=additional_configs["sync_tensorboard"],  # auto-upload sb3's tensorboard metrics
            monitor_gym=additional_configs["monitor_gym"],
            dir= additional_configs["log_path"]
            # save_code=True,  # optional
        )

        env = VecVideoRecorder(
            env,
            additional_configs["video_save_path"] + run.id,
            record_video_trigger=lambda x: x % additional_configs["record_video_trigger"] == 0,
            video_length= additional_configs["video_length"],
    model_save_name = additional_configs["project_name"] + "_" + OmegaConf.to_container(cfg.model, resolve=True)["model_name"]
    model_save_path = rl_agent_checkpoints / model_save_name
                       k not in ["env_id", "policy_type", "model_name", "model_type", "model_type_inference" ,"total_timesteps", "number_envs_parallel"] and v != 'None'}
    model = model_class(
        env=env,
        **filtered_config
    )
    if debug:
        model.learn(
            total_timesteps=config["total_timesteps"],
            log_interval=1,
            progress_bar=additional_configs["progress_bar"],
            save_freq=additional_configs["save_freq"],
            save_path=additional_configs["save_path_callback"],
            name_prefix=additional_configs["name_prefix_callback"],
            save_replay_buffer=additional_configs["save_replay_buffer"],
            save_vecnormalize=additional_configs["save_vecnormalize"],
            model_save_path=additional_configs["video_save_path"] + run.id,
        callback = CallbackList([checkpoint_callback, wandb_callback])
        model.learn(
            total_timesteps=config["total_timesteps"],
            callback=callback,
            log_interval=1,
            progress_bar=additional_configs["progress_bar"],