Skip to content
Snippets Groups Projects
cgan.py 14.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    import os
    from typing import Dict
    
    import torch
    from torch import Tensor
    
    from mu_map.training.loss import GradientDifferenceLoss
    from mu_map.logging import get_logger
    
    # Establish convention for real and fake labels during training
    LABEL_REAL = 1.0
    LABEL_FAKE = 0.0
    
    
    class GeneratorLoss(torch.nn.Module):
        def __init__(
            self, l2_weight: float = 1.0, gdl_weight: float = 1.0, adv_weight: float = 20.0
        ):
            super().__init__()
    
            self.l2 = torch.nn.MSELoss(reduction="mean")
            self.l2_weight = l2_weight
    
            self.gdl = GradientDifferenceLoss()
            self.gdl_weight = gdl_weight
    
            self.adv = torch.nn.MSELoss(reduction="mean")
            self.adv_weight = adv_weight
    
        def forward(
            self,
            mu_maps_real: Tensor,
            outputs_g: Tensor,
            targets_d: Tensor,
            outputs_d: Tensor,
        ):
            loss_l2 = self.l2(outputs_g, mu_maps_real)
            loss_gdl = self.gdl(outputs_g, mu_maps_real)
            loss_adv = self.adv(outputs_d, targets_d)
    
            return (
                self.l2_weight * loss_l2
                + self.gdl_weight * loss_gdl
                + self.adv_weight * loss_adv
            )
    
    
    class cGANTraining:
        def __init__(
            self,
            generator: torch.nn.Module,
            discriminator: torch.nn.Module,
            data_loaders: Dict[str, torch.utils.data.DataLoader],
            epochs: int,
            device: torch.device,
            lr_d: float,
            lr_decay_factor_d: float,
            lr_decay_epoch_d: int,
            lr_g: float,
            lr_decay_factor_g: float,
            lr_decay_epoch_g: int,
            l2_weight: float,
            gdl_weight: float,
            adv_weight: float,
            snapshot_dir: str,
            snapshot_epoch: int,
            logger=None,
        ):
            self.generator = generator
            self.discriminator = discriminator
    
            self.data_loaders = data_loaders
            self.epochs = epochs
            self.device = device
    
            self.snapshot_dir = snapshot_dir
            self.snapshot_epoch = snapshot_epoch
    
            self.logger = logger if logger is not None else get_logger()
    
            self.optimizer_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr_d)
            self.optimizer_g = torch.optim.Adam(self.generator.parameters(), lr=lr_g)
    
            self.lr_scheduler_d = torch.optim.lr_scheduler.StepLR(
                self.optimizer_d,
                step_size=lr_decay_epoch_d,
                gamma=lr_decay_factor_d,
            )
            self.lr_scheduler_g = torch.optim.lr_scheduler.StepLR(
                self.optimizer_g,
                step_size=lr_decay_epoch_g,
                gamma=lr_decay_factor_g,
            )
    
            self.criterion_d = torch.nn.MSELoss(reduction="mean")
            self.criterion_g = GeneratorLoss(
                l2_weight=l2_weight, gdl_weight=gdl_weight, adv_weight=adv_weight
            )
    
        def run(self):
            losses_d = []
            losses_g = []
            for epoch in range(1, self.epochs + 1):
                logger.debug(
                    f"Run epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs} ..."
                )
                _losses_d, _losses_g = self._train_epoch()
                losses_d.extend(_losses_d)
                losses_g.extend(_losses_g)
    
                self._eval_epoch(epoch, "train")
                self._eval_epoch(epoch, "validation")
    
                self.lr_scheduler_d.step()
                self.lr_scheduler_g.step()
    
                if epoch % self.snapshot_epoch == 0:
                    self.store_snapshot(epoch)
    
                logger.debug(
                    f"Finished epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs}"
                )
            return losses_d, losses_g
    
        def _train_epoch(self):
            logger.debug(f"Train epoch")
            torch.set_grad_enabled(True)
    
            self.discriminator = self.discriminator.train()
            self.generator = self.generator.train()
    
            losses_d = []
            losses_g = []
    
            data_loader = self.data_loaders["train"]
            for i, (recons, mu_maps) in enumerate(data_loader):
                print(
                    f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
                    end="\r",
                )
                recons = recons.to(self.device)
                mu_maps = mu_maps.to(self.device)
    
                loss_d_real, loss_d_fake, loss_g = self._step(recons, mu_maps)
    
                losses_d.append(loss_d_real + loss_d_fake)
                losses_g.append(loss_g)
            return losses_d, losses_g
    
        def _step(self, recons, mu_maps_real):
            batch_size = recons.shape[0]
    
            self.optimizer_d.zero_grad()
            self.optimizer_g.zero_grad()
    
            labels_real = torch.full((batch_size, 1), LABEL_REAL, device=self.device)
            labels_fake = torch.full((batch_size, 1), LABEL_FAKE, device=self.device)
    
            with torch.set_grad_enabled(True):
                # compute fake mu maps with generator
                mu_maps_fake = self.generator(recons)
    
                # update discriminator based on real mu maps
                outputs_d = self.discriminator(mu_maps_real)
                loss_d_real = self.criterion_d(outputs_d, labels_real)
                loss_d_real.backward()  # compute gradients
                # update discriminator based on fake mu maps
                outputs_d = self.discriminator(
                    mu_maps_fake.detach()
                )  # note the detach, so that gradients are not computed for the generator
                loss_d_fake = self.criterion_d(outputs_d, labels_fake)
                loss_d_fake.backward()  # compute gradients
                self.optimizer_d.step()  # update discriminator based on gradients
    
                # update generator
                outputs_d = self.discriminator(mu_maps_fake)
                loss_g = self.criterion_g(mu_maps_real, mu_maps_fake, labels_real, outputs_d)
                loss_g.backward()
                self.optimizer_g.step()
    
            return loss_d_real.item(), loss_d_fake.item(), loss_g.item()
    
        def _eval_epoch(self, epoch, split_name):
            logger.debug(f"Evaluate epoch on split {split_name}")
            torch.set_grad_enabled(False)
    
            self.discriminator = self.discriminator.eval()
            self.generator = self.generator.eval()
    
            loss = 0.0
            updates = 0
            
            data_loader = self.data_loaders[split_name]
            for i, (recons, mu_maps) in enumerate(data_loader):
                print(
                    f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
                    end="\r",
                )
                recons = recons.to(self.device)
                mu_maps = mu_maps.to(self.device)
    
                outputs = self.generator(recons)
    
                loss += torch.nn.functional.l1_loss(outputs, mu_maps)
                updates += 1
            loss = loss / updates
            logger.info(
                f"Epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs} - Loss {split_name}: {loss:.6f}"
            )
    
        def store_snapshot(self, epoch):
            snapshot_file_d = f"{epoch:0{len(str(self.epochs))}d}_discriminator.pth"
            snapshot_file_d = os.path.join(self.snapshot_dir, snapshot_file_d)
    
            snapshot_file_g = f"{epoch:0{len(str(self.epochs))}d}_generator.pth"
            snapshot_file_g = os.path.join(self.snapshot_dir, snapshot_file_g)
            logger.debug(f"Store snapshots at {snapshot_file_d} and {snapshot_file_g}")
            torch.save(self.discriminator.state_dict(), snapshot_file_d)
            torch.save(self.generator.state_dict(), snapshot_file_g)
    
    
    if __name__ == "__main__":
        import argparse
        import random
        import sys
    
        import numpy as np
    
        from mu_map.dataset.patches import MuMapPatchDataset
        from mu_map.dataset.normalization import (
            MeanNormTransform,
            MaxNormTransform,
            GaussianNormTransform,
        )
        from mu_map.dataset.transform import ScaleTransform
        from mu_map.logging import add_logging_args, get_logger_by_args
        from mu_map.models.unet import UNet
        from mu_map.models.discriminator import Discriminator
    
        parser = argparse.ArgumentParser(
            description="Train a UNet model to predict μ-maps from reconstructed scatter images",
            formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        )
    
        # Model Args
        parser.add_argument(
            "--features",
            type=int,
            nargs="+",
            default=[64, 128, 256, 512],
            help="number of features in the layers of the UNet structure",
        )
    
        # Dataset Args
        parser.add_argument(
            "--dataset_dir",
            type=str,
            default="data/initial/",
            help="the directory where the dataset for training is found",
        )
        parser.add_argument(
            "--output_scale",
            type=float,
            default=1.0,
            help="scale the attenuation map by this coefficient",
        )
        parser.add_argument(
            "--input_norm",
            type=str,
            choices=["none", "mean", "max", "gaussian"],
            default="mean",
            help="type of normalization applied to the reconstructions",
        )
        parser.add_argument(
            "--patch_size",
            type=int,
            default=32,
            help="the size of patches extracted for each reconstruction",
        )
        parser.add_argument(
            "--patch_offset",
            type=int,
            default=20,
            help="offset to ignore the border of the image",
        )
        parser.add_argument(
            "--number_of_patches",
            type=int,
            default=1,
            help="number of patches extracted for each image",
        )
        parser.add_argument(
            "--no_shuffle",
            action="store_true",
            help="do not shuffle patches in the dataset",
        )
    
        # Training Args
        parser.add_argument(
            "--seed",
            type=int,
            help="seed used for random number generation",
        )
        parser.add_argument(
            "--batch_size",
            type=int,
            default=8,
            help="the batch size used for training",
        )
        parser.add_argument(
            "--output_dir",
            type=str,
            default="train_data",
            help="directory in which results (snapshots and logs) of this training are saved",
        )
        parser.add_argument(
            "--epochs",
            type=int,
            default=100,
            help="the number of epochs for which the model is trained",
        )
        parser.add_argument(
            "--device",
            type=str,
            default="cuda:0" if torch.cuda.is_available() else "cpu",
            help="the device (cpu or gpu) with which the training is performed",
        )
        parser.add_argument(
            "--lr", type=float, default=0.001, help="the initial learning rate for training"
        )
        parser.add_argument(
            "--lr_decay_factor",
            type=float,
            default=0.99,
            help="decay factor for the learning rate",
        )
        parser.add_argument(
            "--lr_decay_epoch",
            type=int,
            default=1,
            help="frequency in epochs at which the learning rate is decayed",
        )
        parser.add_argument(
            "--snapshot_dir",
            type=str,
            default="snapshots",
            help="directory under --output_dir where snapshots are stored",
        )
        parser.add_argument(
            "--snapshot_epoch",
            type=int,
            default=10,
            help="frequency in epochs at which snapshots are stored",
        )
    
        # Logging Args
        add_logging_args(parser, defaults={"--logfile": "train.log"})
    
        args = parser.parse_args()
    
        if not os.path.exists(args.output_dir):
            os.mkdir(args.output_dir)
    
        args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir)
        if not os.path.exists(args.snapshot_dir):
            os.mkdir(args.snapshot_dir)
        else:
            if len(os.listdir(args.snapshot_dir)) > 0:
                print(
                    f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!"
                )
                print(f"           Exit so that data is not accidentally overwritten!")
                exit(1)
    
        args.logfile = os.path.join(args.output_dir, args.logfile)
    
        device = torch.device(args.device)
        logger = get_logger_by_args(args)
        logger.info(args)
    
        args.seed = args.seed if args.seed is not None else random.randint(0, 2 ** 32 - 1)
        logger.info(f"Seed: {args.seed}")
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        np.random.seed(args.seed)
    
        discriminator = Discriminator(in_channels=1, input_size=args.patch_size)
        discriminator = discriminator.to(device)
    
        generator = UNet(in_channels=1, features=args.features)
        generator = generator.to(device)
    
        transform_normalization = None
        if args.input_norm == "mean":
            transform_normalization = MeanNormTransform()
        elif args.input_norm == "max":
            transform_normalization = MaxNormTransform()
        elif args.input_norm == "gaussian":
            transform_normalization = GaussianNormTransform()
    
        transform_augmentation = ScaleTransform(scale_outputs=args.output_scale)
    
        data_loaders = {}
        for split in ["train", "validation"]:
            dataset = MuMapPatchDataset(
                args.dataset_dir,
                patches_per_image=args.number_of_patches,
                patch_size=args.patch_size,
                patch_offset=args.patch_offset,
                shuffle=not args.no_shuffle,
                split_name=split,
                transform_normalization=transform_normalization,
                transform_augmentation=transform_augmentation,
                logger=logger,
            )
            data_loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=args.batch_size,
                shuffle=True,
                pin_memory=True,
                num_workers=1,
            )
            data_loaders[split] = data_loader
    
        training = cGANTraining(
            discriminator=discriminator,
            generator=generator,
            data_loaders=data_loaders,
            epochs=args.epochs,
            device=device,
            lr_d=0.0005,
            lr_decay_factor_d=0.99,
            lr_decay_epoch_d=1,
            lr_g=0.001,
            lr_decay_factor_g=0.99,
            lr_decay_epoch_g=1,
            l2_weight=1.0,
            gdl_weight=1.0,
            adv_weight=20.0,
            snapshot_dir=args.snapshot_dir,
            snapshot_epoch=args.snapshot_epoch,
            logger=logger,
        )
        losses_d, losses_g = training.run()
    
        import matplotlib.pyplot as plt
    
        fig, axs = plt.subplots(1, 2, figsize=(10, 5))
        axs[0].plot(losses_d)
        axs[0].set_title("Discriminator Loss")
        axs[0].set_xlabel("Iteration")
        axs[0].set_ylabel("Loss")
        axs[1].plot(losses_g, label="Generator")
        axs[1].set_title("Generator Loss")
        axs[1].set_xlabel("Iteration")
        axs[1].set_ylabel("Loss")
        plt.savefig("losses.png")