Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from logging import Logger
from typing import Optional
import torch
from mu_map.dataset.default import MuMapDataset
from mu_map.training.lib import TrainingParams, AbstractTraining
from mu_map.training.loss import WeightedLoss
# Establish convention for real and fake labels during training
LABEL_REAL = 1.0
LABEL_FAKE = 0.0
class DiscriminatorParams(TrainingParams):
"""
Wrap training parameters to always carry the name 'Discriminator'.
"""
def __init__(
self,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler],
):
super().__init__(
name="Discriminator",
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
class GeneratorParams(TrainingParams):
"""
Wrap training parameters to always carry the name 'Generator'.
"""
def __init__(
self,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler],
):
super().__init__(
name="Generator",
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
class cGANTraining(AbstractTraining):
"""
Implementation of a conditional generative adversarial network training.
"""
def __init__(
self,
epochs: int,
dataset: MuMapDataset,
batch_size: int,
device: torch.device,
snapshot_dir: str,
snapshot_epoch: int,
params_generator: GeneratorParams,
params_discriminator: DiscriminatorParams,
loss_func_dist: WeightedLoss,
weight_criterion_dist: float,
weight_criterion_adv: float,
logger: Optional[Logger] = None,
):
"""
:param params_generator: training parameters containing a model an according optimizer and optionally a learning rate scheduler for the generator
:param params_discriminator: training parameters containing a model an according optimizer and optionally a learning rate scheduler for the discriminator
:param loss_func_dist: distance loss function for the generator
:param weight_criterion_dist: weight of the distance loss when training the generator
:param weight_criterion_adv: weight of the adversarial loss when training the generator
"""
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
super().__init__(
epochs, dataset, batch_size, device, snapshot_dir, snapshot_epoch, logger
)
self.training_params.append(params_generator)
self.training_params.append(params_discriminator)
self.generator = params_generator.model
self.discriminator = params_discriminator.model
self.optim_g = params_generator.optimizer
self.optim_d = params_discriminator.optimizer
self.weight_criterion_dist = weight_criterion_dist
self.weight_criterion_adv = weight_criterion_adv
self.criterion_adv = torch.nn.MSELoss(reduction="mean")
self.criterion_dist = loss_func_dist
def _after_train_batch(self):
"""
Overwrite calling step on all optimizers as this needs to be done
separately for the generator and discriminator during the training of
a batch.
"""
pass
def _train_batch(self, recons: torch.Tensor, mu_maps: torch.Tensor) -> float:
mu_maps_real = mu_maps # rename real mu maps for clarification
# compute fake mu maps with generator
mu_maps_fake = self.generator(recons)
# note: the batch size may differ for the last batch which is why self.batch_size is not reliable
batch_size = recons.shape[0]
labels_fake = torch.full((batch_size, 1), LABEL_FAKE, device=self.device)
labels_real = torch.full((batch_size, 1), LABEL_REAL, device=self.device)
# prepare inputs for the discriminator
inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
inputs_d_real = torch.cat((recons, mu_maps_real), dim=1)
# ======================= Discriminator =====================================
# compute discriminator loss for fake mu maps
# detach is called so that gradients are not computed for the generator
outputs_d_fake = self.discriminator(inputs_d_fake.detach())
loss_d_fake = self.criterion_adv(outputs_d_fake, labels_fake)
# compute discriminator loss for real mu maps
outputs_d_real = self.discriminator(inputs_d_real)
loss_d_real = self.criterion_adv(outputs_d_real, labels_real)
# update discriminator
loss_d = 0.5 * (loss_d_fake + loss_d_real)
loss_d.backward() # compute gradients
self.optim_d.step()
# ===========================================================================
# ======================= Generator =========================================
outputs_d_fake = self.discriminator(inputs_d_fake) # this time no detach
loss_g_adv = self.criterion_adv(outputs_d_fake, labels_real)
loss_g_dist = self.criterion_dist(mu_maps_fake, mu_maps_real)
loss_g = (
self.weight_criterion_adv * loss_g_adv
+ self.weight_criterion_dist * loss_g_dist
)
loss_g.backward()
self.optim_g.step()
# ===========================================================================
return loss_g.item()
def _eval_batch(self, recons: torch.Tensor, mu_maps: torch.Tensor) -> float:
mu_maps_fake = self.generator(recons)
loss = torch.nn.functional.l1_loss(mu_maps_fake, mu_maps)
return loss.item()
if __name__ == "__main__":
import argparse
import os
import random
import sys
import numpy as np
from mu_map.dataset.patches import MuMapPatchDataset
from mu_map.dataset.normalization import (
MeanNormTransform,
MaxNormTransform,
GaussianNormTransform,
)
from mu_map.dataset.transform import PadCropTranform, SequenceTransform
from mu_map.logging import add_logging_args, get_logger_by_args
from mu_map.models.unet import UNet
from mu_map.models.discriminator import Discriminator, PatchDiscriminator
parser = argparse.ArgumentParser(
description="Train a UNet model to predict μ-maps from reconstructed images",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Model Args
parser.add_argument(
"--features",
type=int,
nargs="+",
default=[64, 128, 256, 512],
help="number of features in the layers of the UNet structure",
)
# Dataset Args
parser.add_argument(
"--dataset_dir",
type=str,
default="data/second/",
help="the directory where the dataset for training is found",
)
parser.add_argument(
"--input_norm",
type=str,
choices=["none", "mean", "max", "gaussian"],
default="mean",
help="type of normalization applied to the reconstructions",
)
parser.add_argument(
"--patch_size",
type=int,
default=32,
help="the size of patches extracted for each reconstruction",
)
parser.add_argument(
"--patch_offset",
type=int,
default=20,
help="offset to ignore the border of the image",
)
parser.add_argument(
"--number_of_patches",
type=int,
default=100,
help="number of patches extracted for each image",
)
parser.add_argument(
"--no_shuffle",
action="store_true",
help="do not shuffle patches in the dataset",
)
parser.add_argument(
"--scatter_correction",
action="store_true",
help="use the scatter corrected reconstructions in the dataset",
)
# Training Args
parser.add_argument(
"--seed",
type=int,
help="seed used for random number generation",
)
parser.add_argument(
"--batch_size",
type=int,
default=64,
help="the batch size used for training",
)
parser.add_argument(
"--output_dir",
type=str,
default="train_data",
help="directory in which results (snapshots and logs) of this training are saved",
)
parser.add_argument(
"--epochs",
type=int,
default=100,
help="the number of epochs for which the model is trained",
)
parser.add_argument(
"--device",
type=str,
default="cuda:0" if torch.cuda.is_available() else "cpu",
help="the device (cpu or gpu) with which the training is performed",
)
parser.add_argument(
"--dist_loss_func",
type=str,
default="l1",
help="define the loss function used as the distance loss of the generator , e.g. 0.75*l2+0.25*gdl",
)
parser.add_argument(
"--dist_loss_weight",
type=float,
default=100.0,
help="weight for the distance loss of the generator",
)
parser.add_argument(
"--adv_loss_weight",
type=float,
default=1.0,
help="weight for the Adversarial-Loss of the generator",
)
parser.add_argument(
"--lr", type=float, default=0.001, help="the initial learning rate for training"
)
parser.add_argument(
"--decay_lr",
action="store_true",
help="decay the learning rate",
)
parser.add_argument(
"--lr_decay_factor",
type=float,
default=0.99,
help="decay factor for the learning rate",
)
parser.add_argument(
"--lr_decay_epoch",
type=int,
default=1,
help="frequency in epochs at which the learning rate is decayed",
)
parser.add_argument(
"--snapshot_dir",
type=str,
default="snapshots",
help="directory under --output_dir where snapshots are stored",
)
parser.add_argument(
"--snapshot_epoch",
type=int,
default=10,
help="frequency in epochs at which snapshots are stored",
)
# Logging Args
add_logging_args(parser, defaults={"--logfile": "train.log"})
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir)
if not os.path.exists(args.snapshot_dir):
os.mkdir(args.snapshot_dir)
else:
if len(os.listdir(args.snapshot_dir)) > 0:
print(
f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!"
)
print(f" Exit so that data is not accidentally overwritten!")
exit(1)
args.logfile = os.path.join(args.output_dir, args.logfile)
logger = get_logger_by_args(args)
logger.info(args)
device = torch.device(args.device)
args.seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
logger.info(f"Seed: {args.seed}")
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
transform_normalization = None
if args.input_norm == "mean":
transform_normalization = MeanNormTransform()
elif args.input_norm == "max":
transform_normalization = MaxNormTransform()
elif args.input_norm == "gaussian":
transform_normalization = GaussianNormTransform()
transform_normalization = SequenceTransform(
[transform_normalization, PadCropTranform(dim=3, size=32)]
)
dataset = MuMapPatchDataset(
args.dataset_dir,
patches_per_image=args.number_of_patches,
patch_size=args.patch_size,
patch_offset=args.patch_offset,
shuffle=not args.no_shuffle,
transform_normalization=transform_normalization,
scatter_correction=args.scatter_correction,
logger=logger,
)
discriminator = Discriminator(in_channels=2, input_size=args.patch_size)
discriminator = discriminator.to(device)
optimizer = torch.optim.Adam(
discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999)
)
lr_scheduler = (
torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_decay_epoch, gamma=args.lr_decay_factor
)
if args.decay_lr
else None
)
params_d = DiscriminatorParams(
model=discriminator, optimizer=optimizer, lr_scheduler=lr_scheduler
)
generator = UNet(in_channels=1, features=args.features)
generator = generator.to(device)
optimizer = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(0.5, 0.999))
lr_scheduler = (
torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_decay_factor, gamma=args.lr_decay_factor
)
if args.decay_lr
else None
)
params_g = GeneratorParams(
model=generator, optimizer=optimizer, lr_scheduler=lr_scheduler
)
dist_criterion = WeightedLoss.from_str(args.dist_loss_func)
logger.debug(f"Use distance criterion: {dist_criterion}")
training = cGANTraining(
epochs=args.epochs,
dataset=dataset,
batch_size=args.batch_size,
device=device,
snapshot_dir=args.snapshot_dir,
snapshot_epoch=args.snapshot_epoch,
params_generator=params_g,
params_discriminator=params_d,
loss_func_dist=dist_criterion,
weight_criterion_dist=args.dist_loss_weight,
weight_criterion_adv=args.adv_loss_weight,
logger=logger,
)
training.run()