Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
0cc09b15
Commit
0cc09b15
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
add a code for training
parent
d80575c9
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
mu_map/test.py
+9
-1
9 additions, 1 deletion
mu_map/test.py
mu_map/train.py
+216
-0
216 additions, 0 deletions
mu_map/train.py
mu_map/training/default.py
+44
-0
44 additions, 0 deletions
mu_map/training/default.py
with
269 additions
and
1 deletion
mu_map/test.py
+
9
−
1
View file @
0cc09b15
...
@@ -14,5 +14,13 @@ y = GaussianNorm()(x)
...
@@ -14,5 +14,13 @@ y = GaussianNorm()(x)
print
(
f
"
After: mean=
{
y
.
mean
()
:
.
3
f
}
std=
{
y
.
std
()
:
.
3
f
}
"
)
print
(
f
"
After: mean=
{
y
.
mean
()
:
.
3
f
}
std=
{
y
.
std
()
:
.
3
f
}
"
)
import
cv2
as
cv
import
numpy
as
np
x
=
np
.
zeros
((
512
,
512
),
np
.
uint8
)
cv
.
imshow
(
"
X
"
,
x
)
key
=
cv
.
waitKey
(
0
)
while
key
!=
ord
(
"
q
"
):
print
(
key
)
key
=
cv
.
waitKey
(
0
)
This diff is collapsed.
Click to expand it.
mu_map/train.py
+
216
−
0
View file @
0cc09b15
import
logging
import
logging.handlers
log_formatter
=
logging
.
Formatter
(
fmt
=
"
%(asctime)s - %(levelname)s: %(message)s
"
,
datefmt
=
"
%m/%d/%Y %I:%M:%S %p
"
)
logger
=
logging
.
getLogger
()
logger
.
setLevel
(
logging
.
INFO
)
log_handler_console
=
logging
.
StreamHandler
()
log_handler_console
.
setFormatter
(
log_formatter
)
logger
.
addHandler
(
log_handler_console
)
logfile
=
"
train.log
"
log_handler_file
=
logging
.
handlers
.
WatchedFileHandler
(
logfile
)
log_handler_file
.
setFormatter
(
log_formatter
)
logger
.
addHandler
(
log_handler_file
)
logger
.
info
(
"
This is a test!
"
)
logger
.
warning
(
"
The training loss is over 9000!
"
)
logger
.
error
(
"
This is an error
"
)
logger
.
info
(
"
The end
"
)
args
=
parser
.
parse_args
()
args
.
channel_mapping
=
dict
(
zip
(
args
.
channel_mapping
,
[
0
,
1
,
2
]))
log_formatter
=
logging
.
Formatter
(
fmt
=
"
%(asctime)s - %(levelname)s: %(message)s
"
,
datefmt
=
"
%m/%d/%Y %I:%M:%S %p
"
)
logger
=
logging
.
getLogger
()
logger
.
setLevel
(
logging
.
INFO
)
log_handler_console
=
logging
.
StreamHandler
()
log_handler_console
.
setFormatter
(
log_formatter
)
logger
.
addHandler
(
log_handler_console
)
if
args
.
logfile
:
log_handler_file
=
logging
.
handlers
.
WatchedFileHandler
(
args
.
logfile
)
log_handler_file
.
setFormatter
(
log_formatter
)
logger
.
addHandler
(
log_handler_file
)
# Setup snapshot directory
if
os
.
path
.
exists
(
args
.
snapshot_dir
):
if
not
os
.
path
.
isdir
(
args
.
snapshot_dir
):
raise
ValueError
(
"
Snapshot directory[%s] is not a directory!
"
%
args
.
snapshot_dir
)
else
:
os
.
mkdir
(
args
.
snapshot_dir
)
random_seed
=
int
(
time
.
time
())
logger
.
info
(
f
"
Seed RNG:
{
random_seed
}
"
)
torch
.
manual_seed
(
random_seed
)
device
=
torch
.
device
(
args
.
device
)
model
=
load_model
(
args
.
model
,
args
.
weights
,
device
)
params
=
model
.
parameters
()
optimizer
=
model
.
init_optimizer
()
lr_scheduler
=
torch
.
optim
.
lr_scheduler
.
StepLR
(
optimizer
,
args
.
decay_epoch
,
args
.
decay_rate
)
transforms_train
=
[
transforms
.
RandomHorizontalFlip
(),
transforms
.
RandomVerticalFlip
()]
datasets
=
{}
datasets
[
"
train
"
]
=
(
CSVDataset
(
os
.
path
.
join
(
args
.
csv_dir
,
"
training.csv
"
),
args
.
dataset_dir
,
model
,
augments
=
transforms_train
,
illuminations
=
args
.
illuminations
,
random_illumination
=
True
,
)
if
not
args
.
illuminations_to_channel
else
IlluminationChannelDataset
(
os
.
path
.
join
(
args
.
csv_dir
,
"
training.csv
"
),
args
.
dataset_dir
,
model
,
augments
=
transforms_train
,
channel_mapping
=
args
.
channel_mapping
,
)
)
datasets
[
"
val
"
]
=
(
CSVDataset
(
os
.
path
.
join
(
args
.
csv_dir
,
"
validation.csv
"
),
args
.
dataset_dir
,
model
,
illuminations
=
args
.
illuminations
,
random_illumination
=
False
,
)
if
not
args
.
illuminations_to_channel
else
IlluminationChannelDataset
(
os
.
path
.
join
(
args
.
csv_dir
,
"
validation.csv
"
),
args
.
dataset_dir
,
model
,
channel_mapping
=
args
.
channel_mapping
,
)
)
data_loaders
=
{}
for
key
in
datasets
:
data_loaders
[
key
]
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
datasets
[
key
],
batch_size
=
args
.
batch_size
,
shuffle
=
True
,
pin_memory
=
True
,
num_workers
=
8
,
)
global_epoch
=
0
def
run_epoch
(
model
,
optimizer
,
data_loader
,
phase
=
"
train
"
):
if
phase
==
"
train
"
:
model
.
train
()
else
:
model
.
eval
()
running_loss
=
0
since
=
time
.
time
()
count
=
1
for
inputs
,
labels
in
data_loader
:
print
(
"
Iteration {}/{}
"
.
format
(
count
,
len
(
data_loader
))
+
"
\r
"
,
end
=
""
)
count
+=
1
inputs
=
inputs
.
to
(
device
)
if
type
(
labels
)
==
torch
.
Tensor
:
labels
=
labels
.
to
(
device
)
elif
type
(
labels
)
==
list
:
labels
=
[
label
.
to
(
device
)
for
label
in
labels
]
optimizer
.
zero_grad
()
with
torch
.
set_grad_enabled
(
phase
==
"
train
"
):
output
=
model
(
inputs
)
loss
=
model
.
compute_loss
(
output
,
labels
)
if
phase
==
"
train
"
:
loss
.
backward
()
optimizer
.
step
()
running_loss
+=
loss
.
item
()
*
inputs
.
size
(
0
)
return
running_loss
/
len
(
data_loader
.
dataset
),
time
.
time
()
-
since
try
:
for
epoch
in
range
(
1
,
args
.
epochs
+
1
):
if
epoch
==
1
:
str_epoch
=
"
Epoch {}/{}
"
.
format
(
0
,
args
.
epochs
)
epoch_loss
,
epoch_time
=
run_epoch
(
model
,
optimizer
,
data_loaders
[
"
val
"
],
phase
=
"
val
"
)
str_time
=
"
Time {}s
"
.
format
(
round
(
epoch_time
))
str_loss
=
"
Loss {:.4f}
"
.
format
(
epoch_loss
)
print
(
"
VAL:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
logger
.
info
(
"
VAL:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
epoch_loss
,
epoch_time
=
run_epoch
(
model
,
optimizer
,
data_loaders
[
"
train
"
],
phase
=
"
val
"
)
str_time
=
"
Time {}s
"
.
format
(
round
(
epoch_time
))
str_loss
=
"
Loss {:.4f}
"
.
format
(
epoch_loss
)
print
(
"
TRAIN:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
logger
.
info
(
"
TRAIN:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
global_epoch
=
epoch
str_epoch
=
"
Epoch {}/{}
"
.
format
(
epoch
,
args
.
epochs
)
epoch_loss
,
epoch_time
=
run_epoch
(
model
,
optimizer
,
data_loaders
[
"
train
"
])
str_time
=
"
Time {}s
"
.
format
(
round
(
epoch_time
))
str_loss
=
"
Loss {:.4f}
"
.
format
(
epoch_loss
)
print
(
"
TRAIN:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
logger
.
info
(
"
TRAIN:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
# create snapshot
if
epoch
%
args
.
snapshot_epoch
==
0
:
snapshot_file
=
f
"
{
global_epoch
:
0
{
len
(
str
(
args
.
epochs
))
}
d
}
.pth
"
snapshot_file
=
os
.
path
.
join
(
args
.
snapshot_dir
,
snapshot_file
)
print
(
"
Create Snapshot[{}]
"
.
format
(
snapshot_file
))
logger
.
info
(
"
Create Snapshot[{}]
"
.
format
(
snapshot_file
))
torch
.
save
(
model
.
state_dict
(),
snapshot_file
)
# compute validation loss
if
epoch
%
args
.
val_epoch
==
0
:
print
(
"
VAL:
"
+
str_epoch
,
end
=
"
\r
"
)
epoch_loss
,
epoch_time
=
run_epoch
(
model
,
optimizer
,
data_loaders
[
"
val
"
],
phase
=
"
val
"
)
str_time
=
"
Time {}s
"
.
format
(
round
(
epoch_time
))
str_loss
=
"
Loss {:.4f}
"
.
format
(
epoch_loss
)
print
(
"
VAL:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
logger
.
info
(
"
VAL:
"
+
str_epoch
+
"
"
+
str_loss
+
"
"
+
str_time
)
lr_scheduler
.
step
()
except
KeyboardInterrupt
:
snapshot_file
=
f
"
{
global_epoch
:
0
{
len
(
str
(
args
.
epochs
))
}
d
}
.pth
"
snapshot_file
=
os
.
path
.
join
(
args
.
snapshot_dir
,
snapshot_file
)
print
(
"
Create Snapshot[{}]
"
.
format
(
snapshot_file
))
torch
.
save
(
model
.
state_dict
(),
snapshot_file
)
This diff is collapsed.
Click to expand it.
mu_map/training/default.py
0 → 100644
+
44
−
0
View file @
0cc09b15
class
Training
():
def
__init__
(
self
,
epochs
):
self
.
epochs
=
epochs
def
run
(
self
):
for
epoch
in
range
(
1
,
self
.
epochs
+
1
):
self
.
run_epoch
(
self
.
data_loader
[
"
train
"
],
phase
=
"
train
"
)
loss_training
=
self
.
run_epoch
(
self
.
data_loader
[
"
train
"
],
phase
=
"
eval
"
)
loss_validation
=
self
.
run_epoch
(
self
.
data_loader
[
"
validation
"
],
phase
=
"
eval
"
)
# ToDo: log outputs and time
self
.
lr_scheduler
.
step
()
if
epoch
%
self
.
snapshot_epoch
:
self
.
store_snapshot
(
epoch
)
def
run_epoch
(
self
,
data_loader
,
phase
):
self
.
model
.
train
()
if
phase
==
"
train
"
else
self
.
model
.
eval
()
epoch_loss
=
0
for
inputs
,
labels
in
self
.
data_loader
:
inputs
=
inputs
.
to
(
self
.
device
)
labels
=
labels
.
to
(
self
.
device
)
self
.
optimizer
.
zero_grad
()
with
torch
.
set_grad_enabled
(
phase
==
"
train
"
):
outputs
=
self
.
model
(
inputs
)
loss
=
self
.
loss
(
outputs
,
labels
)
if
phase
==
"
train
"
:
loss
.
backward
()
optimizer
.
step
()
epoch_loss
+=
loss
.
item
()
/
inputs
.
size
[
0
]
return
epoch_loss
def
store_snapshot
(
self
,
epoch
):
pass
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment