Skip to content
Snippets Groups Projects
Commit 18715a99 authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

add script to evaluate the amount of outlier runs depending on training parameters

parent 4398a11a
No related branches found
No related tags found
No related merge requests found
from mu_map.random_search.eval.params import parameter_groups
from mu_map.random_search.eval.util import filter_by_params, load_data, remove_outliers
data = load_data("cgan_random_search/")
n_total = len(data)
outlier_runs = pd.read_csv("cgan_random_search/outliers.csv")
outlier_runs = outlier_runs[outlier_runs["outlier"]]
outlier_runs = list(outlier_runs["run"])
data_outlier = dict(filter(lambda i: i[0] in outlier_runs, data.items()))
n_outlier = len(data_outlier)
print(f"There are {n_outlier} outlier runs in {n_total} total runs which is {100 * n_outlier / n_total:.2f}%")
print()
print(f"By Parameters:")
for param_label, param_groups in parameter_groups.items():
param_label = " ".join(map(lambda _str: _str[0].upper() + _str[1:], param_label.split("_")))
print(f" - {param_label}")
for label, value in param_groups.groups.items():
n_outlier = len(filter_by_params(data_outlier, value, param_groups.keys))
n_total = len(filter_by_params(data, value, param_groups.keys))
print(f" - {label:>12}: {str(n_outlier):>2}/{str(n_total):>2} = {100 * n_outlier / n_total:.2f}%")
print()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment