Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
1e16732e
Commit
1e16732e
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
introduce function to init random seeds in training lib
parent
93f4da3e
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
mu_map/training/cgan.py
+6
-18
6 additions, 18 deletions
mu_map/training/cgan.py
mu_map/training/distance.py
+6
-19
6 additions, 19 deletions
mu_map/training/distance.py
mu_map/training/lib.py
+24
-0
24 additions, 0 deletions
mu_map/training/lib.py
with
36 additions
and
37 deletions
mu_map/training/cgan.py
+
6
−
18
View file @
1e16732e
...
@@ -186,15 +186,12 @@ if __name__ == "__main__":
...
@@ -186,15 +186,12 @@ if __name__ == "__main__":
import
numpy
as
np
import
numpy
as
np
from
mu_map.dataset.patches
import
MuMapPatchDataset
from
mu_map.dataset.patches
import
MuMapPatchDataset
from
mu_map.dataset.normalization
import
(
from
mu_map.dataset.normalization
import
norm_choices
,
norm_by_str
MeanNormTransform
,
MaxNormTransform
,
GaussianNormTransform
,
)
from
mu_map.dataset.transform
import
PadCropTranform
,
SequenceTransform
from
mu_map.dataset.transform
import
PadCropTranform
,
SequenceTransform
from
mu_map.logging
import
add_logging_args
,
get_logger_by_args
from
mu_map.logging
import
add_logging_args
,
get_logger_by_args
from
mu_map.models.unet
import
UNet
from
mu_map.models.unet
import
UNet
from
mu_map.models.discriminator
import
Discriminator
,
PatchDiscriminator
from
mu_map.models.discriminator
import
Discriminator
,
PatchDiscriminator
from
mu_map.training.lib
import
init_random_seed
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
description
=
"
Train a UNet model to predict μ-maps from reconstructed images
"
,
description
=
"
Train a UNet model to predict μ-maps from reconstructed images
"
,
...
@@ -220,7 +217,7 @@ if __name__ == "__main__":
...
@@ -220,7 +217,7 @@ if __name__ == "__main__":
parser
.
add_argument
(
parser
.
add_argument
(
"
--input_norm
"
,
"
--input_norm
"
,
type
=
str
,
type
=
str
,
choices
=
[
"
none
"
,
"
mean
"
,
"
max
"
,
"
gaussian
"
]
,
choices
=
norm_choices
,
default
=
"
mean
"
,
default
=
"
mean
"
,
help
=
"
type of normalization applied to the reconstructions
"
,
help
=
"
type of normalization applied to the reconstructions
"
,
)
)
...
@@ -365,19 +362,10 @@ if __name__ == "__main__":
...
@@ -365,19 +362,10 @@ if __name__ == "__main__":
device
=
torch
.
device
(
args
.
device
)
device
=
torch
.
device
(
args
.
device
)
args
.
seed
=
args
.
seed
if
args
.
seed
is
not
None
else
random
.
randint
(
0
,
2
**
32
-
1
)
seed
=
init_random_seed
(
args
.
seed
)
logger
.
info
(
f
"
Seed:
{
args
.
seed
}
"
)
logger
.
info
(
f
"
Seed:
{
args
.
seed
}
"
)
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
transform_normalization
=
norm_by_str
(
args
.
input_norm
)
np
.
random
.
seed
(
args
.
seed
)
transform_normalization
=
None
if
args
.
input_norm
==
"
mean
"
:
transform_normalization
=
MeanNormTransform
()
elif
args
.
input_norm
==
"
max
"
:
transform_normalization
=
MaxNormTransform
()
elif
args
.
input_norm
==
"
gaussian
"
:
transform_normalization
=
GaussianNormTransform
()
transform_normalization
=
SequenceTransform
(
transform_normalization
=
SequenceTransform
(
[
transform_normalization
,
PadCropTranform
(
dim
=
3
,
size
=
32
)]
[
transform_normalization
,
PadCropTranform
(
dim
=
3
,
size
=
32
)]
)
)
...
...
This diff is collapsed.
Click to expand it.
mu_map/training/distance.py
+
6
−
19
View file @
1e16732e
...
@@ -72,13 +72,10 @@ if __name__ == "__main__":
...
@@ -72,13 +72,10 @@ if __name__ == "__main__":
import
numpy
as
np
import
numpy
as
np
from
mu_map.dataset.patches
import
MuMapPatchDataset
from
mu_map.dataset.patches
import
MuMapPatchDataset
from
mu_map.dataset.normalization
import
(
from
mu_map.dataset.normalization
import
norm_choices
,
norm_by_str
MeanNormTransform
,
MaxNormTransform
,
GaussianNormTransform
,
)
from
mu_map.logging
import
add_logging_args
,
get_logger_by_args
from
mu_map.logging
import
add_logging_args
,
get_logger_by_args
from
mu_map.models.unet
import
UNet
from
mu_map.models.unet
import
UNet
from
mu_map.training.lib
import
init_random_seed
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
description
=
"
Train a UNet model to predict μ-maps from reconstructed scatter images
"
,
description
=
"
Train a UNet model to predict μ-maps from reconstructed scatter images
"
,
...
@@ -104,7 +101,7 @@ if __name__ == "__main__":
...
@@ -104,7 +101,7 @@ if __name__ == "__main__":
parser
.
add_argument
(
parser
.
add_argument
(
"
--input_norm
"
,
"
--input_norm
"
,
type
=
str
,
type
=
str
,
choices
=
[
"
none
"
,
"
mean
"
,
"
max
"
,
"
gaussian
"
]
,
choices
=
norm_choices
,
default
=
"
mean
"
,
default
=
"
mean
"
,
help
=
"
type of normalization applied to the reconstructions
"
,
help
=
"
type of normalization applied to the reconstructions
"
,
)
)
...
@@ -231,20 +228,10 @@ if __name__ == "__main__":
...
@@ -231,20 +228,10 @@ if __name__ == "__main__":
logger
=
get_logger_by_args
(
args
)
logger
=
get_logger_by_args
(
args
)
logger
.
info
(
args
)
logger
.
info
(
args
)
args
.
seed
=
args
.
seed
if
args
.
seed
is
not
None
else
random
.
randint
(
0
,
2
**
32
-
1
)
seed
=
init_random_seed
(
args
.
seed
)
logger
.
info
(
f
"
Seed:
{
args
.
seed
}
"
)
logger
.
info
(
f
"
Seed:
{
seed
}
"
)
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
transform_normalization
=
None
if
args
.
input_norm
==
"
mean
"
:
transform_normalization
=
MeanNormTransform
()
elif
args
.
input_norm
==
"
max
"
:
transform_normalization
=
MaxNormTransform
()
elif
args
.
input_norm
==
"
gaussian
"
:
transform_normalization
=
GaussianNormTransform
()
transform_normalization
=
norm_by_str
(
args
.
input_norm
)
dataset
=
MuMapPatchDataset
(
dataset
=
MuMapPatchDataset
(
args
.
dataset_dir
,
args
.
dataset_dir
,
patches_per_image
=
args
.
number_of_patches
,
patches_per_image
=
args
.
number_of_patches
,
...
...
This diff is collapsed.
Click to expand it.
mu_map/training/lib.py
+
24
−
0
View file @
1e16732e
...
@@ -4,6 +4,7 @@ Module functioning as a library for training related code.
...
@@ -4,6 +4,7 @@ Module functioning as a library for training related code.
from
dataclasses
import
dataclass
from
dataclasses
import
dataclass
from
logging
import
Logger
from
logging
import
Logger
import
os
import
os
import
random
from
typing
import
Dict
,
List
,
Optional
from
typing
import
Dict
,
List
,
Optional
import
sys
import
sys
...
@@ -15,6 +16,29 @@ from mu_map.dataset.default import MuMapDataset
...
@@ -15,6 +16,29 @@ from mu_map.dataset.default import MuMapDataset
from
mu_map.logging
import
get_logger
from
mu_map.logging
import
get_logger
def
init_random_seed
(
seed
:
Optional
[
int
]
=
None
)
->
int
:
"""
Set the seed for all RNGs (default python, numpy and torch).
Parameters
----------
seed: int, optional
the seed to be used which is generated if not provided
Returns
-------
int
the randoms seed used
"""
seed
=
seed
if
seed
is
not
None
else
random
.
randint
(
0
,
2
**
32
-
1
)
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
torch
.
manual_seed
(
seed
)
return
seed
@dataclass
@dataclass
class
TrainingParams
:
class
TrainingParams
:
"""
"""
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment