Skip to content
Snippets Groups Projects
Commit 1e918e65 authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

add script to evaluate generated reconstructions

parent f63f5561
No related branches found
No related tags found
No related merge requests found
from mu_map.eval.measures import nmae, mse
if __name__ == "__main__":
import argparse
import json
import os
import numpy as np
import pandas as pd
import torch
from mu_map.data.prepare import headers
from mu_map.data.remove_bed import add_bed
from mu_map.dataset.default import MuMapDataset
from mu_map.dataset.util import load_dcm_img, align_images
from mu_map.dataset.transform import SequenceTransform, PadCropTranform
from mu_map.models.unet import UNet
from mu_map.training.random_search import normalization_by_params, scatter_correction_by_params
from mu_map.util import reconstruct
parser = argparse.ArgumentParser(
description="Compute, print and store measures for a given model based on the resulting reconstructions",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cpu", "cuda"],
help="the device on which the model is evaluated (cpu or cuda)",
)
parser.add_argument(
"--dir_train",
type=str,
required=True,
help="directory where training results (snapshots, params) are stored",
)
parser.add_argument("--out", type=str, help="write results as a csv file")
parser.add_argument(
"--dataset_dir",
type=str,
default="data/second/",
help="directory where the dataset is found",
)
parser.add_argument(
"--split",
type=str,
default="validation",
choices=["train", "test", "validation", "all"],
help="the split of the dataset to be processed",
)
args = parser.parse_args()
if args.split == "all":
args.split = None
torch.set_grad_enabled(False)
device = torch.device(args.device)
with open(os.path.join(args.dir_train, "params.json"), mode="r") as f:
params = json.load(f)
weights = os.path.join(args.dir_train, "snapshots", "val_min_generator.pth")
model = UNet()
model.load_state_dict(torch.load(weights, map_location=device))
model = model.to(device).eval()
transform_pad_crop = PadCropTranform(dim=3, size=32)
transform_normalization = SequenceTransform(
transforms=[
normalization_by_params(params),
transform_pad_crop,
]
)
dataset = MuMapDataset(
args.dataset_dir,
transform_normalization=transform_normalization,
split_name=args.split,
scatter_correction=scatter_correction_by_params(params),
)
dataset_with_bed = MuMapDataset(args.dataset_dir, transform_normalization=transform_pad_crop, split_name=args.split, bed_contours_file=None)
values = pd.DataFrame({
"NMAE_NAC_TO_AC": [],
"NMAE_SYN_TO_AC": [],
"NMAE_CT_TO_AC": [],
"NMAE_NAC_TO_CT": [],
"NMAE_SYN_TO_CT": [],
})
for i, ((recon, _), (recon_nac, mu_map_ct)) in enumerate(zip(dataset, dataset_with_bed)):
print(
f"Process input {str(i):>{len(str(len(dataset)))}}/{len(dataset)}", end="\r"
)
_row = dataset.table.iloc[i]
mu_map_syn = model(recon.unsqueeze(dim=0).to(device))
mu_map_syn = mu_map_syn.squeeze().cpu().numpy()
mu_map_ct = mu_map_ct.squeeze().cpu().numpy()
mu_map_syn = add_bed(mu_map_syn, mu_map_ct, bed_contour=dataset.bed_contours[_row["id"]])
recon_nac = recon_nac.squeeze().cpu().numpy()
recon_ac = load_dcm_img(os.path.join(dataset.dir_images, _row[headers.file_recon_ac_nsc]))
recon_ac = torch.from_numpy(recon_ac)
recon_ac, _ = transform_pad_crop(recon_ac, recon_ac)
recon_ac = recon_ac.cpu().numpy()
recon_ac_syn = reconstruct(recon_nac.copy(), mu_map=mu_map_syn.copy(), use_gpu=args.device=="cuda")
recon_ac_ct = reconstruct(recon_nac.copy(), mu_map=mu_map_ct.copy(), use_gpu=args.device=="cuda")
row = pd.DataFrame({
"NMAE_NAC_TO_AC": [nmae(recon_nac, recon_ac)],
"NMAE_SYN_TO_AC": [nmae(recon_ac_syn, recon_ac)],
"NMAE_CT_TO_AC": [nmae(recon_ac_ct, recon_ac)],
"NMAE_NAC_TO_CT": [nmae(recon_nac, recon_ac_ct)],
"NMAE_SYN_TO_CT": [nmae(recon_ac_syn, recon_ac_ct)],
})
values = pd.concat((values, row), ignore_index=True)
print(f" " * 100, end="\r")
if args.out:
values.to_csv(args.out, index=False)
print("Scores:")
for measure_name, measure_values in values.items():
mean = measure_values.mean()
std = np.std(measure_values)
print(f" - {measure_name:>20}: {mean:.6f}±{std:.6f}")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment