Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
29d0cfa5
Commit
29d0cfa5
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
write comments and improve measure computation
parent
81d2a7c9
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/eval/measures.py
+76
-27
76 additions, 27 deletions
mu_map/eval/measures.py
with
76 additions
and
27 deletions
mu_map/eval/measures.py
+
76
−
27
View file @
29d0cfa5
import
numpy
as
np
import
numpy
as
np
import
pandas
as
pd
from
mu_map.dataset.default
import
MuMapDataset
from
mu_map.models.unet
import
UNet
def
mse
(
prediction
:
np
.
array
,
target
:
np
.
array
):
def
mse
(
prediction
:
np
.
array
,
target
:
np
.
array
)
->
float
:
"""
Compute the mean squared error (MSE) between a prediction and
a target array.
Parameters
----------
prediction: np.ndarray
target: np.ndarray
"""
se
=
(
prediction
-
target
)
**
2
se
=
(
prediction
-
target
)
**
2
mse
=
se
.
sum
()
/
se
.
size
mse
=
se
.
sum
()
/
se
.
size
return
mse
return
mse
def
nmae
(
prediction
:
np
.
array
,
target
:
np
.
array
,
vmax
:
float
=
None
,
vmin
:
float
=
None
):
def
nmae
(
if
vmax
is
None
:
prediction
:
np
.
array
,
target
:
np
.
array
,
vmax
:
float
=
None
,
vmin
:
float
=
None
vmax
=
target
.
max
()
):
if
vmin
is
None
:
"""
vmin
=
target
.
min
()
Compute the normalized mean absolute error (NMAE) between a prediction
and a target array.
Parameters
----------
prediction: np.ndarray
target: np.ndarray
vmax: float, optional
maximum value for normalization, defaults to the maximal value in the target
vmin: float, optional
minimum value for normalization, defaults to the minimal value in the target
"""
vmax
=
target
.
max
()
if
vmax
is
None
else
vmax
vmin
=
target
.
min
()
if
vmin
is
None
else
vmin
ae
=
np
.
absolute
(
prediction
-
target
)
ae
=
np
.
absolute
(
prediction
-
target
)
mae
=
ae
.
sum
()
/
ae
.
size
mae
=
ae
.
sum
()
/
ae
.
size
...
@@ -19,16 +45,51 @@ def nmae(prediction: np.array, target: np.array, vmax:float=None, vmin:float=Non
...
@@ -19,16 +45,51 @@ def nmae(prediction: np.array, target: np.array, vmax:float=None, vmin:float=Non
return
nmae
return
nmae
def
compute_measures
(
dataset
:
MuMapDataset
,
model
:
UNet
)
->
pd
.
DataFrame
:
"""
Compute measures (MSE, NMAE) for all images in a dataset.
Parameters
----------
dataset: MuMapDataset
the dataset containing the reconstructions and mu maps for which the scores are computed
model: UNet
the UNet model which is used to predict mu maps from reconstructions
Returns
-------
pd.DataFrame
a dataframe containing containing the measures for each image in the dataset
"""
measures
=
{
"
NMAE
"
:
nmae
,
"
MSE
"
:
mse
}
values
=
pd
.
DataFrame
(
dict
(
map
(
lambda
x
:
(
x
,
[]),
measures
.
keys
())))
for
i
,
(
recon
,
mu_map
)
in
enumerate
(
dataset
):
_id
=
dataset
.
table
.
iloc
[
i
][
"
id
"
]
print
(
f
"
Process input
{
str
(
i
)
:
>
{
len
(
str
(
len
(
dataset
)))
}}
/
{
len
(
dataset
)
}
"
,
end
=
"
\r
"
)
prediction
=
model
(
recon
.
unsqueeze
(
dim
=
0
).
to
(
device
))
prediction
=
prediction
.
squeeze
().
cpu
().
numpy
()
mu_map
=
mu_map
.
squeeze
().
cpu
().
numpy
()
row
=
dict
(
map
(
lambda
item
:
(
item
[
0
],
[
item
[
1
](
prediction
,
mu_map
)]),
measures
.
items
())
)
row
[
"
id
"
]
=
_id
row
=
pd
.
DataFrame
(
row
)
values
=
pd
.
concat
((
values
,
row
),
ignore_index
=
True
)
print
(
f
"
"
*
100
,
end
=
"
\r
"
)
return
values
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
import
argparse
import
argparse
import
pandas
as
pd
import
torch
import
torch
from
mu_map.dataset.default
import
MuMapDataset
from
mu_map.dataset.normalization
import
norm_by_str
,
norm_choices
from
mu_map.dataset.normalization
import
norm_by_str
,
norm_choices
from
mu_map.dataset.transform
import
SequenceTransform
,
PadCropTranform
from
mu_map.dataset.transform
import
SequenceTransform
,
PadCropTranform
from
mu_map.models.unet
import
UNet
parser
=
argparse
.
ArgumentParser
(
parser
=
argparse
.
ArgumentParser
(
description
=
"
Compute, print and store measures for a given model
"
,
description
=
"
Compute, print and store measures for a given model
"
,
...
@@ -37,7 +98,7 @@ if __name__ == "__main__":
...
@@ -37,7 +98,7 @@ if __name__ == "__main__":
parser
.
add_argument
(
parser
.
add_argument
(
"
--device
"
,
"
--device
"
,
type
=
str
,
type
=
str
,
default
=
"
cpu
"
,
default
=
"
cuda
"
if
torch
.
cuda
.
is_available
()
else
"
cpu
"
,
choices
=
[
"
cpu
"
,
"
cuda
"
],
choices
=
[
"
cpu
"
,
"
cuda
"
],
help
=
"
the device on which the model is evaluated (cpu or cuda)
"
,
help
=
"
the device on which the model is evaluated (cpu or cuda)
"
,
)
)
...
@@ -84,7 +145,7 @@ if __name__ == "__main__":
...
@@ -84,7 +145,7 @@ if __name__ == "__main__":
torch
.
set_grad_enabled
(
False
)
torch
.
set_grad_enabled
(
False
)
device
=
torch
.
device
(
args
.
device
)
device
=
torch
.
device
(
args
.
device
)
model
=
UNet
()
model
=
UNet
(
features
=
[
32
,
64
,
128
,
256
,
512
]
)
model
.
load_state_dict
(
torch
.
load
(
args
.
weights
,
map_location
=
device
))
model
.
load_state_dict
(
torch
.
load
(
args
.
weights
,
map_location
=
device
))
model
=
model
.
to
(
device
).
eval
()
model
=
model
.
to
(
device
).
eval
()
...
@@ -101,28 +162,16 @@ if __name__ == "__main__":
...
@@ -101,28 +162,16 @@ if __name__ == "__main__":
scatter_correction
=
args
.
scatter_corrected
,
scatter_correction
=
args
.
scatter_corrected
,
)
)
measures
=
{
"
NMAE
"
:
nmae
,
"
MSE
"
:
mse
}
values
=
compute_measures
(
dataset
,
model
)
values
=
pd
.
DataFrame
(
dict
(
map
(
lambda
x
:
(
x
,
[]),
measures
.
keys
())))
for
i
,
(
recon
,
mu_map
)
in
enumerate
(
dataset
):
print
(
f
"
Process input
{
str
(
i
)
:
>
{
len
(
str
(
len
(
dataset
)))
}}
/
{
len
(
dataset
)
}
"
,
end
=
"
\r
"
)
prediction
=
model
(
recon
.
unsqueeze
(
dim
=
0
).
to
(
device
))
prediction
=
prediction
.
squeeze
().
cpu
().
numpy
()
mu_map
=
mu_map
.
squeeze
().
cpu
().
numpy
()
row
=
pd
.
DataFrame
(
dict
(
map
(
lambda
item
:
(
item
[
0
],
[
item
[
1
](
prediction
,
mu_map
)]),
measures
.
items
())
))
values
=
pd
.
concat
((
values
,
row
),
ignore_index
=
True
)
print
(
f
"
"
*
100
,
end
=
"
\r
"
)
if
args
.
out
:
if
args
.
out
:
values
.
to_csv
(
args
.
out
,
index
=
False
)
values
.
to_csv
(
args
.
out
,
index
=
False
)
print
(
"
Scores:
"
)
print
(
"
Scores:
"
)
for
measure_name
,
measure_values
in
values
.
items
():
for
measure_name
,
measure_values
in
values
.
items
():
if
measure_name
==
"
id
"
:
continue
mean
=
measure_values
.
mean
()
mean
=
measure_values
.
mean
()
std
=
np
.
std
(
measure_values
)
std
=
np
.
std
(
measure_values
)
print
(
f
"
-
{
measure_name
:
>
6
}
:
{
mean
:
.
6
f
}
±
{
std
:
.
6
f
}
"
)
print
(
f
"
-
{
measure_name
:
>
6
}
:
{
mean
:
.
6
f
}
±
{
std
:
.
6
f
}
"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment