Skip to content
Snippets Groups Projects
Commit 37279fe9 authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

random search uses new measure computation method

parent 29d0cfa5
No related branches found
No related tags found
No related merge requests found
......@@ -20,7 +20,7 @@ from mu_map.dataset.normalization import (
GaussianNormTransform,
)
from mu_map.dataset.transform import PadCropTranform, Transform, SequenceTransform
from mu_map.eval.measures import nmae, mse
from mu_map.eval.measures import compute_measures
from mu_map.models.discriminator import Discriminator, PatchDiscriminator
from mu_map.models.unet import UNet
from mu_map.training.cgan import cGANTraining, DiscriminatorParams, GeneratorParams
......@@ -337,28 +337,7 @@ class RandomSearchCGAN(RandomSearch):
scatter_correction=self.params["scatter_correction"],
)
measures = {"NMAE": nmae, "MSE": mse}
values = pd.DataFrame(dict(map(lambda x: (x, []), measures.keys())))
for i, (recon, mu_map) in enumerate(dataset):
print(
f"Process input {str(i):>{len(str(len(dataset)))}}/{len(dataset)}",
end="\r",
)
prediction = model(recon.unsqueeze(dim=0).to(self.device))
prediction = prediction.squeeze().cpu().numpy()
mu_map = mu_map.squeeze().cpu().numpy()
row = pd.DataFrame(
dict(
map(
lambda item: (item[0], [item[1](prediction, mu_map)]),
measures.items(),
)
)
)
values = pd.concat((values, row), ignore_index=True)
print(f" " * 100, end="\r")
values = compute_measures(dataset, model)
values.to_csv(os.path.join(self.dir_train, "measures.csv"), index=False)
return values["NMAE"].mean()
......@@ -470,5 +449,5 @@ class RandomSearchCGAN(RandomSearch):
if __name__ == "__main__":
random_search = RandomSearchCGAN(iterations=10)
random_search = RandomSearchCGAN(iterations=50)
random_search.run()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment