Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
488452f2
Commit
488452f2
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
update random search to use the new cgan training
parent
e3e6d7d5
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/training/random_search.py
+122
-30
122 additions, 30 deletions
mu_map/training/random_search.py
with
122 additions
and
30 deletions
mu_map/training/random_search.py
+
122
−
30
View file @
488452f2
"""
Implementation of random search for hyper parameter optimization.
"""
import
json
import
json
import
os
import
os
import
random
import
random
...
@@ -19,39 +22,77 @@ from mu_map.dataset.transform import PadCropTranform, Transform, SequenceTransfo
...
@@ -19,39 +22,77 @@ from mu_map.dataset.transform import PadCropTranform, Transform, SequenceTransfo
from
mu_map.eval.measures
import
nmae
,
mse
from
mu_map.eval.measures
import
nmae
,
mse
from
mu_map.models.discriminator
import
Discriminator
from
mu_map.models.discriminator
import
Discriminator
from
mu_map.models.unet
import
UNet
from
mu_map.models.unet
import
UNet
from
mu_map.training.cgan
import
cGANTraining
,
Training
Params
from
mu_map.training.cgan
2
import
cGANTraining
,
DiscriminatorParams
,
Generator
Params
from
mu_map.training.loss
import
WeightedLoss
from
mu_map.training.loss
import
WeightedLoss
from
mu_map.logging
import
get_logger
from
mu_map.logging
import
get_logger
class
ParamSampler
:
class
ParamSampler
:
"""
Abstract class to sample a parameter.
"""
def
sample
(
self
)
->
Any
:
def
sample
(
self
)
->
Any
:
"""
Create a new value for a parameter.
"""
pass
pass
class
ChoiceSampler
(
ParamSampler
):
class
ChoiceSampler
(
ParamSampler
):
"""
Sample from a list of choices.
"""
def
__init__
(
self
,
values
:
List
[
Any
]):
def
__init__
(
self
,
values
:
List
[
Any
]):
"""
Create a new choice sampler.
:param values: the list of values from which a sample is drawn.
"""
super
().
__init__
()
super
().
__init__
()
self
.
values
=
values
self
.
values
=
values
def
sample
(
self
)
->
Any
:
def
sample
(
self
)
->
Any
:
"""
Retrieve a random value from the list of choices.
"""
idx
=
random
.
randrange
(
0
,
len
(
self
.
values
))
idx
=
random
.
randrange
(
0
,
len
(
self
.
values
))
return
self
.
values
[
idx
]
return
self
.
values
[
idx
]
class
DependentChoiceSampler
(
ChoiceSampler
):
class
DependentChoiceSampler
(
ChoiceSampler
):
"""
A choice sampler that depends on other parameters.
"""
def
__init__
(
self
,
build_choices
:
Callable
[[
Any
],
List
[
Any
]]):
def
__init__
(
self
,
build_choices
:
Callable
[[
Any
],
List
[
Any
]]):
"""
Create a dependent choice sampler.
:param build_choices: a callable to create a list of choices depending on other parameters
"""
super
().
__init__
(
values
=
[])
super
().
__init__
(
values
=
[])
self
.
build_choices
=
build_choices
self
.
build_choices
=
build_choices
self
.
dependency_names
=
list
(
build_choices
.
__annotations__
.
keys
())
self
.
dependency_names
=
list
(
build_choices
.
__annotations__
.
keys
())
def
sample
(
self
,
dependencies
:
Dict
[
str
,
Any
])
->
List
[
Any
]:
def
sample
(
self
,
dependencies
:
Dict
[
str
,
Any
])
->
List
[
Any
]:
"""
Sample a choice based on given dependencies.
:param dependencies: a dict of name value pairs for all dependencies
note that the name has to match the parameter name in the build_choices callable
:return: a new sample
"""
self
.
validate_deps
(
dependencies
)
self
.
validate_deps
(
dependencies
)
self
.
values
=
self
.
build_choices
(
**
dependencies
)
self
.
values
=
self
.
build_choices
(
**
dependencies
)
return
super
().
sample
()
return
super
().
sample
()
def
validate_deps
(
self
,
dependencies
:
Dict
[
str
,
Any
])
->
bool
:
def
validate_deps
(
self
,
dependencies
:
Dict
[
str
,
Any
]):
"""
Validate a dict of dependencies by checking if all required parameters of
the build_choices callable are available.
:param dependencies: dict of name value pairs for dependencies
"""
for
name
in
self
.
dependency_names
:
for
name
in
self
.
dependency_names
:
assert
(
assert
(
name
in
dependencies
.
keys
()
name
in
dependencies
.
keys
()
...
@@ -59,30 +100,60 @@ class DependentChoiceSampler(ChoiceSampler):
...
@@ -59,30 +100,60 @@ class DependentChoiceSampler(ChoiceSampler):
class
FloatIntervalSampler
(
ParamSampler
):
class
FloatIntervalSampler
(
ParamSampler
):
"""
Sample a value from a float interval.
"""
def
__init__
(
self
,
min_val
:
float
,
max_val
:
float
):
def
__init__
(
self
,
min_val
:
float
,
max_val
:
float
):
"""
Create a new float interval sampler.
:param min_val: the minimal value to draw
:param max_val: the maximal value to draw
"""
super
().
__init__
()
super
().
__init__
()
self
.
min_val
=
min_val
self
.
min_val
=
min_val
self
.
max_val
=
max_val
self
.
max_val
=
max_val
def
sample
(
self
)
->
float
:
def
sample
(
self
)
->
float
:
"""
Draw a new float.
"""
return
random
.
uniform
(
self
.
min_val
,
self
.
max_val
)
return
random
.
uniform
(
self
.
min_val
,
self
.
max_val
)
class
IntIntervalSampler
(
ParamSampler
):
class
IntIntervalSampler
(
ParamSampler
):
"""
Sample a value from an integer interval.
"""
def
__init__
(
self
,
min_val
:
int
,
max_val
:
int
):
def
__init__
(
self
,
min_val
:
int
,
max_val
:
int
):
"""
Create a new int interval sampler.
:param min_val: the minimal value to draw
:param max_val: the maximal value to draw
"""
super
().
__init__
()
super
().
__init__
()
self
.
min_val
=
min_val
self
.
min_val
=
min_val
self
.
max_val
=
max_val
self
.
max_val
=
max_val
def
sample
(
self
)
->
int
:
def
sample
(
self
)
->
int
:
"""
Draw a new int.
"""
return
random
.
randint
(
self
.
min_val
,
self
.
max_val
)
return
random
.
randint
(
self
.
min_val
,
self
.
max_val
)
def
scatter_correction_by_params
(
params
:
Dict
[
str
,
str
]):
def
scatter_correction_by_params
(
params
:
Dict
[
str
,
str
])
->
bool
:
"""
Utility function since loading json does not map to boolean values.
"""
return
params
[
"
scatter_correction
"
]
==
"
True
"
return
params
[
"
scatter_correction
"
]
==
"
True
"
def
normalization_by_params
(
params
:
Dict
[
str
,
str
]):
def
normalization_by_params
(
params
:
Dict
[
str
,
str
]):
"""
Utility function to load a normalization method.
"""
_norm
=
params
[
"
normalization
"
]
_norm
=
params
[
"
normalization
"
]
if
"
Gaussian
"
in
_norm
:
if
"
Gaussian
"
in
_norm
:
return
GaussianNormTransform
()
return
GaussianNormTransform
()
...
@@ -95,10 +166,25 @@ def normalization_by_params(params: Dict[str, str]):
...
@@ -95,10 +166,25 @@ def normalization_by_params(params: Dict[str, str]):
class
RandomSearch
:
class
RandomSearch
:
"""
Abstract implementation of a random search.
"""
def
__init__
(
self
,
param_sampler
=
Dict
[
str
,
ParamSampler
]):
def
__init__
(
self
,
param_sampler
=
Dict
[
str
,
ParamSampler
]):
"""
Create a new random sampler.
:param param_sampler: a dict of name and parameter sampler pairs
all of them are sampled for a single random search run
"""
self
.
param_sampler
=
param_sampler
self
.
param_sampler
=
param_sampler
def
sample
(
self
):
def
sample
(
self
):
"""
Sample all parameters.
This makes sure that all dependent choice samplers get their required dependencies (need to be registered in order).
:return: a dictionary of name and drawn parameter pairs.
"""
_params
=
{}
_params
=
{}
for
key
,
sampler
in
self
.
param_sampler
.
items
():
for
key
,
sampler
in
self
.
param_sampler
.
items
():
if
isinstance
(
sampler
,
DependentChoiceSampler
):
if
isinstance
(
sampler
,
DependentChoiceSampler
):
...
@@ -108,7 +194,14 @@ class RandomSearch:
...
@@ -108,7 +194,14 @@ class RandomSearch:
_params
[
key
]
=
param
_params
[
key
]
=
param
return
_params
return
_params
def
serialize_params
(
self
,
params
:
Dict
[
str
,
Any
],
filename
:
Optional
[
str
]
=
None
):
def
serialize_params
(
self
,
params
:
Dict
[
str
,
Any
],
filename
:
Optional
[
str
]
=
None
)
->
str
:
"""
Serialize is a set of parameters to json and dump them into a file.
:param params: dict of params to be serialized
:param filename: optional filename where the json is dumped
:return: the params as a json representation
"""
_params
=
{}
_params
=
{}
for
key
,
value
in
params
.
items
():
for
key
,
value
in
params
.
items
():
_params
[
key
]
=
str
(
value
).
replace
(
"
\n
"
,
""
).
replace
(
"
"
,
"
,
"
)
_params
[
key
]
=
str
(
value
).
replace
(
"
\n
"
,
""
).
replace
(
"
"
,
"
,
"
)
...
@@ -121,6 +214,10 @@ class RandomSearch:
...
@@ -121,6 +214,10 @@ class RandomSearch:
def
validate_and_make_directory
(
_dir
:
str
):
def
validate_and_make_directory
(
_dir
:
str
):
"""
Uility method to validate that a directory exists and is empty.
If is does not exist, it is created.
"""
if
not
os
.
path
.
exists
(
_dir
):
if
not
os
.
path
.
exists
(
_dir
):
os
.
mkdir
(
_dir
)
os
.
mkdir
(
_dir
)
return
return
...
@@ -131,6 +228,9 @@ def validate_and_make_directory(_dir: str):
...
@@ -131,6 +228,9 @@ def validate_and_make_directory(_dir: str):
class
RandomSearchCGAN
(
RandomSearch
):
class
RandomSearchCGAN
(
RandomSearch
):
"""
Implementation of a random search for cGAN training.
"""
def
__init__
(
self
,
iterations
:
int
,
logger
=
None
):
def
__init__
(
self
,
iterations
:
int
,
logger
=
None
):
super
().
__init__
({})
super
().
__init__
({})
...
@@ -138,7 +238,8 @@ class RandomSearchCGAN(RandomSearch):
...
@@ -138,7 +238,8 @@ class RandomSearchCGAN(RandomSearch):
self
.
iterations
=
iterations
self
.
iterations
=
iterations
self
.
dir
=
"
cgan_random_search
"
self
.
dir
=
"
cgan_random_search
"
validate_and_make_directory
(
self
.
dir
)
validate_and_make_directory
(
self
.
dir
)
self
.
device
=
torch
.
device
(
"
cuda
"
)
# self.device = torch.device("cuda")
self
.
device
=
torch
.
device
(
"
cpu
"
)
self
.
params
=
{}
self
.
params
=
{}
self
.
dir_train
=
os
.
path
.
join
(
self
.
dir
,
"
train_data
"
)
self
.
dir_train
=
os
.
path
.
join
(
self
.
dir
,
"
train_data
"
)
...
@@ -154,11 +255,11 @@ class RandomSearchCGAN(RandomSearch):
...
@@ -154,11 +255,11 @@ class RandomSearchCGAN(RandomSearch):
self
.
training
:
cGANTraining
=
None
self
.
training
:
cGANTraining
=
None
# dataset params
# dataset params
self
.
param_sampler
[
"
patch_size
"
]
=
ChoiceSampler
([
32
])
self
.
param_sampler
[
"
patch_size
"
]
=
ChoiceSampler
([
32
,
64
])
self
.
param_sampler
[
"
patch_offset
"
]
=
ChoiceSampler
([
0
])
self
.
param_sampler
[
"
patch_offset
"
]
=
ChoiceSampler
([
0
])
self
.
param_sampler
[
"
patch_number
"
]
=
ChoiceSampler
([
1
00
]
)
self
.
param_sampler
[
"
patch_number
"
]
=
IntIntervalSampler
(
min_val
=
50
,
max_val
=
2
00
)
self
.
param_sampler
[
"
scatter_correction
"
]
=
ChoiceSampler
([
True
,
False
])
#
self.param_sampler["scatter_correction"] = ChoiceSampler([True, False])
#
self.param_sampler["scatter_correction"] = ChoiceSampler([
Tru
e])
self
.
param_sampler
[
"
scatter_correction
"
]
=
ChoiceSampler
([
Fals
e
])
self
.
param_sampler
[
"
shuffle
"
]
=
ChoiceSampler
([
False
,
True
])
self
.
param_sampler
[
"
shuffle
"
]
=
ChoiceSampler
([
False
,
True
])
self
.
param_sampler
[
"
normalization
"
]
=
ChoiceSampler
(
self
.
param_sampler
[
"
normalization
"
]
=
ChoiceSampler
(
[
MeanNormTransform
(),
MaxNormTransform
(),
GaussianNormTransform
()]
[
MeanNormTransform
(),
MaxNormTransform
(),
GaussianNormTransform
()]
...
@@ -166,10 +267,10 @@ class RandomSearchCGAN(RandomSearch):
...
@@ -166,10 +267,10 @@ class RandomSearchCGAN(RandomSearch):
self
.
param_sampler
[
"
pad_crop
"
]
=
ChoiceSampler
([
None
,
PadCropTranform
(
dim
=
3
,
size
=
32
)])
self
.
param_sampler
[
"
pad_crop
"
]
=
ChoiceSampler
([
None
,
PadCropTranform
(
dim
=
3
,
size
=
32
)])
# training params
# training params
self
.
param_sampler
[
"
epochs
"
]
=
ChoiceSampler
([
1
00
]
)
self
.
param_sampler
[
"
epochs
"
]
=
IntIntervalSampler
(
min_val
=
50
,
max_val
=
2
00
)
self
.
param_sampler
[
"
batch_size
"
]
=
ChoiceSampler
([
64
])
self
.
param_sampler
[
"
batch_size
"
]
=
ChoiceSampler
([
64
])
#
self.param_sampler["lr"] = FloatIntervalSampler(0.01, 0.0001)
self
.
param_sampler
[
"
lr
"
]
=
FloatIntervalSampler
(
0.01
,
0.0001
)
self
.
param_sampler
[
"
lr
"
]
=
ChoiceSampler
([
0.001
])
#
self.param_sampler["lr"] = ChoiceSampler([0.001])
self
.
param_sampler
[
"
lr_decay
"
]
=
ChoiceSampler
([
False
,
True
])
self
.
param_sampler
[
"
lr_decay
"
]
=
ChoiceSampler
([
False
,
True
])
self
.
param_sampler
[
"
lr_decay_epoch
"
]
=
ChoiceSampler
([
1
])
self
.
param_sampler
[
"
lr_decay_epoch
"
]
=
ChoiceSampler
([
1
])
self
.
param_sampler
[
"
lr_decay_factor
"
]
=
ChoiceSampler
([
0.99
])
self
.
param_sampler
[
"
lr_decay_factor
"
]
=
ChoiceSampler
([
0.99
])
...
@@ -202,6 +303,7 @@ class RandomSearchCGAN(RandomSearch):
...
@@ -202,6 +303,7 @@ class RandomSearchCGAN(RandomSearch):
return
nmae_min
return
nmae_min
def
eval_run
(
self
):
def
eval_run
(
self
):
return
random
.
randint
(
0
,
200
)
self
.
logger
.
debug
(
"
Perform evaluation ...
"
)
self
.
logger
.
debug
(
"
Perform evaluation ...
"
)
torch
.
set_grad_enabled
(
False
)
torch
.
set_grad_enabled
(
False
)
...
@@ -264,28 +366,17 @@ class RandomSearchCGAN(RandomSearch):
...
@@ -264,28 +366,17 @@ class RandomSearchCGAN(RandomSearch):
transforms
=
list
(
filter
(
lambda
transform
:
transform
is
not
None
,
transforms
))
transforms
=
list
(
filter
(
lambda
transform
:
transform
is
not
None
,
transforms
))
transform_normalization
=
SequenceTransform
(
transforms
)
transform_normalization
=
SequenceTransform
(
transforms
)
self
.
logger
.
debug
(
f
"
Init data loaders ....
"
)
self
.
logger
.
debug
(
f
"
Init dataset ...
"
)
data_loaders
=
{}
dataset
=
MuMapPatchDataset
(
for
split
in
[
"
train
"
,
"
validation
"
]:
dataset
=
MuMapPatchDataset
(
self
.
dataset_dir
,
self
.
dataset_dir
,
patches_per_image
=
self
.
params
[
"
patch_number
"
],
patches_per_image
=
self
.
params
[
"
patch_number
"
],
patch_size
=
self
.
params
[
"
patch_size
"
],
patch_size
=
self
.
params
[
"
patch_size
"
],
patch_offset
=
self
.
params
[
"
patch_offset
"
],
patch_offset
=
self
.
params
[
"
patch_offset
"
],
shuffle
=
self
.
params
[
"
shuffle
"
]
if
split
==
"
train
"
else
False
,
shuffle
=
self
.
params
[
"
shuffle
"
],
split_name
=
split
,
transform_normalization
=
transform_normalization
,
transform_normalization
=
transform_normalization
,
scatter_correction
=
self
.
params
[
"
scatter_correction
"
],
scatter_correction
=
self
.
params
[
"
scatter_correction
"
],
logger
=
logger
,
logger
=
logger
,
)
)
data_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
dataset
,
batch_size
=
self
.
params
[
"
batch_size
"
],
shuffle
=
split
==
"
train
"
,
pin_memory
=
True
,
num_workers
=
1
,
)
data_loaders
[
split
]
=
data_loader
self
.
logger
.
debug
(
f
"
Init discriminator ....
"
)
self
.
logger
.
debug
(
f
"
Init discriminator ....
"
)
discriminator
=
Discriminator
(
discriminator
=
Discriminator
(
...
@@ -304,7 +395,7 @@ class RandomSearchCGAN(RandomSearch):
...
@@ -304,7 +395,7 @@ class RandomSearchCGAN(RandomSearch):
if
self
.
params
[
"
lr_decay
"
]
if
self
.
params
[
"
lr_decay
"
]
else
None
else
None
)
)
params_d
=
Training
Params
(
params_d
=
Discriminator
Params
(
model
=
discriminator
,
optimizer
=
optimizer
,
lr_scheduler
=
lr_scheduler
model
=
discriminator
,
optimizer
=
optimizer
,
lr_scheduler
=
lr_scheduler
)
)
...
@@ -324,14 +415,15 @@ class RandomSearchCGAN(RandomSearch):
...
@@ -324,14 +415,15 @@ class RandomSearchCGAN(RandomSearch):
if
self
.
params
[
"
lr_decay
"
]
if
self
.
params
[
"
lr_decay
"
]
else
None
else
None
)
)
params_g
=
Training
Params
(
params_g
=
Generator
Params
(
model
=
generator
,
optimizer
=
optimizer
,
lr_scheduler
=
lr_scheduler
model
=
generator
,
optimizer
=
optimizer
,
lr_scheduler
=
lr_scheduler
)
)
self
.
logger
.
debug
(
f
"
Init training ....
"
)
self
.
logger
.
debug
(
f
"
Init training ....
"
)
self
.
training
=
cGANTraining
(
self
.
training
=
cGANTraining
(
data_loaders
=
data_loaders
,
epochs
=
self
.
params
[
"
epochs
"
],
epochs
=
self
.
params
[
"
epochs
"
],
dataset
=
dataset
,
batch_size
=
self
.
params
[
"
batch_size
"
],
device
=
self
.
device
,
device
=
self
.
device
,
snapshot_dir
=
snapshot_dir
,
snapshot_dir
=
snapshot_dir
,
snapshot_epoch
=
self
.
params
[
"
epochs
"
],
snapshot_epoch
=
self
.
params
[
"
epochs
"
],
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment