Skip to content
Snippets Groups Projects
Commit 59c2f1ed authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

add script to prepare a dataset from dicom directories

parent dec37349
No related branches found
No related tags found
No related merge requests found
import argparse
from datetime import datetime, timedelta
from enum import Enum
import os
from typing import List
import numpy as np
import pandas as pd
import pydicom
class MyocardialProtocol(Enum):
Stress = 1
Rest = 2
headers = argparse.Namespace()
headers.id = "id"
headers.patient_id = "patient_id"
headers.age = "age"
headers.weight = "weight"
headers.size = "size"
headers.protocol = "protocol"
headers.datetime_acquisition = "datetime_acquisition"
headers.datetime_reconstruction = "datetime_reconstruction"
headers.pixel_spacing_x = "pixel_spacing_x"
headers.pixel_spacing_y = "pixel_spacing_y"
headers.pixel_spacing_z = "pixel_spacing_z"
headers.shape_x = "shape_x"
headers.shape_y = "shape_y"
headers.shape_z = "shape_z"
headers.radiopharmaceutical = "radiopharmaceutical"
headers.radionuclide_dose = "radionuclide_dose"
headers.radionuclide_code = "radionuclide_code"
headers.radionuclide_meaning = "radionuclide_meaning"
headers.energy_window_peak_lower = "energy_window_peak_lower"
headers.energy_window_peak_upper = "energy_window_peak_upper"
headers.energy_window_scatter_lower = "energy_window_scatter_lower"
headers.energy_window_scatter_upper = "energy_window_scatter_upper"
headers.detector_count = "detector_count"
headers.collimator_type = "collimator_type"
headers.rotation_start = "rotation_start"
headers.rotation_step = "rotation_step"
headers.rotation_scan_arc = "rotation_scan_arc"
headers.file_recon_ac = "file_recon_ac"
headers.file_recon_no_ac = "file_recon_no_ac"
headers.file_mu_map = "file_mu_map"
def parse_series_time(dicom_image: pydicom.dataset.FileDataset) -> datetime:
"""
Parse the date and time of a DICOM series object into a datetime object.
:param dicom_image: the dicom file to parse the series date and time from
:return: an according python datetime object.
"""
_date = dicom_image.SeriesDate
_time = dicom_image.SeriesTime
return datetime(
year=int(_date[0:4]),
month=int(_date[4:6]),
day=int(_date[6:8]),
hour=int(_time[0:2]),
minute=int(_time[2:4]),
second=int(_time[4:6]),
microsecond=int(_time.split(".")[1]),
)
def parse_age(patient_age: str) -> int:
"""
Parse and age string as defined in the DICOM standard into an integer representing the age in years.
:param patient_age: age string as defined in the DICOM standard
:return: the age in years as a number
"""
assert (
type(patient_age) == str
), f"patient age needs to be a string and not {type(patient_age)}"
assert (
len(patient_age) == 4
), f"patient age [{patient_age}] has to be four characters long"
_num, _format = patient_age[:3], patient_age[3]
assert (
_format == "Y"
), f"currently, only patient ages in years [Y] is supported, not [{_format}]"
return int(_num)
def get_projection(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol) -> pydicom.dataset.FileDataset:
"""
Extract the SPECT projection from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
dicom_images = list(dicom_images)
if len(dicom_images) != 1:
raise ValueError(f"No or multiple projections {len(dicom_images)} for protocol {protocol.name} available")
return dicom_images[0]
def get_reconstruction(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol, corrected:bool=True) -> pydicom.dataset.FileDataset:
"""
Extract a SPECT reconstruction from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
The corrected flag can be used to either extract an attenuation corrected or a non-attenuation corrected image.
If there are multiple images, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:param corrected: extract an attenuation or non-attenuation corrected image
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
if corrected:
dicom_images = filter(
lambda image: "AC" in image.SeriesDescription
and "NoAC" not in image.SeriesDescription,
dicom_images,
)
dicom_images = list(dicom_images)
else:
dicom_images = filter(
lambda image: "NoAC" in image.SeriesDescription, dicom_images
)
# for SPECT reconstructions created in clinical studies this value exists and is set to 'APEX_TO_BASE'
# for the reconstructions with attenuation maps it does not exist
dicom_images = filter(
lambda image: not hasattr(image, "SliceProgressionDirection"), dicom_images
)
dicom_images = list(dicom_images)
dicom_images.sort(key=lambda image: parse_series_time(image), reverse=True)
if len(dicom_images) == 0:
_str = "AC" if corrected else "NoAC"
raise ValueError(f"{_str} Reconstruction for protocol {protocol.name} is not available")
return dicom_images[0]
def get_attenuation_map(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol) -> pydicom.dataset.FileDataset:
"""
Extract an attenuation map from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
If there are multiple attenuation maps, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
dicom_images = filter(lambda image: "µ-map" in image.SeriesDescription, dicom_images)
dicom_images = list(dicom_images)
dicom_images.sort(key=lambda image: parse_series_time(image), reverse=True)
if len(dicom_images) == 0:
raise ValueError(f"Attenuation map for protocol {protocol.name} is not available")
return dicom_images[0]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Prepare a dataset from DICOM directories",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"dicom_dirs",
type=str,
nargs="+",
help="paths to DICOMDIR files or directories containing one of them",
)
parser.add_argument("--dataset_dir", type=str, required=True, help="")
parser.add_argument("--images_dir", type=str, default="images", help="")
parser.add_argument("--csv", type=str, default="data.csv", help="")
parser.add_argument("--prefix_projection", type=str, default="projection", help="")
parser.add_argument("--prefix_mu_map", type=str, default="mu_map", help="")
parser.add_argument("--prefix_recon_ac", type=str, default="recon_ac", help="")
parser.add_argument("--prefix_recon_no_ac", type=str, default="recon_no_ac", help="")
args = parser.parse_args()
args.dicom_dirs = [
(os.path.dirname(_file) if os.path.isfile(_file) else _file)
for _file in args.dicom_dirs
]
args.images_dir = os.path.join(args.dataset_dir, args.images_dir)
args.csv = os.path.join(args.dataset_dir, args.csv)
patients = []
dicom_dir_by_patient = {}
for dicom_dir in args.dicom_dirs:
dataset = pydicom.dcmread(os.path.join(dicom_dir, "DICOMDIR"))
for patient in dataset.patient_records:
assert (
patient.PatientID not in dicom_dir_by_patient
), f"Patient {patient.PatientID} is contained twice in the given DICOM directories ({dicom_dir} and {dicom_dir_by_patient[patient.PatientID]})"
dicom_dir_by_patient[patient.PatientID] = dicom_dir
patients.append(patient)
if not os.path.exists(args.dataset_dir):
os.mkdir(args.dataset_dir)
if not os.path.exists(args.images_dir):
os.mkdir(args.images_dir)
_id = 1
if os.path.exists(args.csv):
data = pd.read_csv(args.csv)
_id = int(data[headers.id].max())
else:
data = pd.DataFrame(dict([(key, []) for key in vars(headers).keys()]))
for i, patient in enumerate(patients, start=1):
print(f"Process patient {str(i):>3}/{len(patients)}:")
# get all myocardial scintigraphy studies
studies = list(
filter(
lambda child: child.DirectoryRecordType == "STUDY"
and child.StudyDescription == "Myokardszintigraphie",
patient.children,
)
)
# extract all dicom images
dicom_images = []
for study in studies:
series = list(
filter(lambda child: child.DirectoryRecordType == "SERIES", study.children)
)
for _series in series:
images = list(
filter(
lambda child: child.DirectoryRecordType == "IMAGE", _series.children
)
)
# all SPECT data is stored as a single 3D array which means that it is a series with a single image
# this is not the case for CTs, which are skipped here
if len(images) != 1:
continue
images = list(
map(
lambda image: pydicom.dcmread(
os.path.join(dicom_dir_by_patient[patient.PatientID], *image.ReferencedFileID),
stop_before_pixels=True,
),
images,
)
)
if len(images) == 0:
continue
dicom_images.append(images[0])
for protocol in MyocardialProtocol:
if len(data[(data[headers.patient_id] == patient.PatientID) & (data[headers.protocol] == protocol.name)]) > 0:
print(f"Skip {patient.PatientID}:{protocol.name} since it is already contained in the dataset")
continue
try:
projection_image = get_projection(dicom_images, protocol=protocol)
recon_ac = get_reconstruction(dicom_images, protocol=protocol, corrected=True)
recon_noac = get_reconstruction(dicom_images, protocol=protocol, corrected=False)
attenuation_map = get_attenuation_map(dicom_images, protocol=protocol)
except ValueError as e:
print(f"Skip {patient.PatientID}:{protocol.name} because {e}")
continue
recon_images = [recon_ac, recon_noac, attenuation_map]
# extract date times and assert that they are equal for all reconstruction images
datetimes = list(map(parse_series_time, recon_images))
_datetimes = sorted(datetimes, reverse=True)
_datetimes_delta = list(map(lambda dt: _datetimes[0] - dt, _datetimes))
_equal = all(map(lambda dt: dt < timedelta(seconds=300), _datetimes_delta))
assert (
_equal
), f"Not all dates and times of the reconstructions are equal: {datetimes}"
# extract pixel spacings and assert that they are equal for all reconstruction images
pixel_spacings = map(
lambda image: [*image.PixelSpacing, image.SliceThickness], recon_images
)
pixel_spacings = map(
lambda pixel_spacing: list(map(float, pixel_spacing)), pixel_spacings
)
pixel_spacings = map(
lambda pixel_spacing: np.array(pixel_spacing), pixel_spacings
)
pixel_spacings = list(pixel_spacings)
_equal = all(
map(
lambda pixel_spacing: (pixel_spacing == pixel_spacings[0]).all(),
pixel_spacings,
)
)
assert (
_equal
), f"Not all pixel spacings of the reconstructions are equal: {pixel_spacings}"
pixel_spacing = pixel_spacings[0]
# extract shapes and assert that they are equal for all reconstruction images
shapes = map(
lambda image: [image.Rows, image.Columns, image.NumberOfSlices],
recon_images,
)
shapes = map(lambda shape: list(map(int, shape)), shapes)
shapes = map(lambda shape: np.array(shape), shapes)
shapes = list(shapes)
_equal = all(map(lambda shape: (shape == shapes[0]).all(), shapes))
# assert _equal, f"Not all shapes of the reconstructions are equal: {shapes}"
# print(shapes)
shape = shapes[0]
# exctract and sort energy windows
energy_windows = projection_image.EnergyWindowInformationSequence
energy_windows = map(
lambda ew: ew.EnergyWindowRangeSequence[0], energy_windows
)
energy_windows = map(
lambda ew: (
float(ew.EnergyWindowLowerLimit),
float(ew.EnergyWindowUpperLimit),
),
energy_windows,
)
energy_windows = list(energy_windows)
energy_windows.sort(key=lambda ew: ew[0], reverse=True)
# re-read images with pixel-level data and save accordingly
projection_image = pydicom.dcmread(projection_image.filename)
recon_ac = pydicom.dcmread(recon_ac.filename)
recon_noac = pydicom.dcmread(recon_noac.filename)
attenuation_map = pydicom.dcmread(attenuation_map.filename)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_projection}.dcm"), projection_image)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_ac}.dcm"), recon_ac)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_no_ac}.dcm"), recon_noac)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_mu_map}.dcm"), attenuation_map)
row = {
headers.id: _id,
headers.patient_id: projection_image.PatientID,
headers.age: parse_age(projection_image.PatientAge),
headers.weight: float(projection_image.PatientWeight),
headers.size: float(projection_image.PatientSize),
headers.protocol: protocol.name,
headers.datetime_acquisition: parse_series_time(projection_image),
headers.datetime_reconstruction: datetimes[0],
headers.pixel_spacing_x: pixel_spacing[0],
headers.pixel_spacing_y: pixel_spacing[1],
headers.pixel_spacing_z: pixel_spacing[2],
headers.shape_x: shape[0],
headers.shape_y: shape[1],
headers.shape_z: shape[2],
headers.radiopharmaceutical: projection_image.RadiopharmaceuticalInformationSequence[
0
].Radiopharmaceutical,
headers.radionuclide_dose: projection_image.RadiopharmaceuticalInformationSequence[
0
].RadionuclideTotalDose,
headers.radionuclide_code: projection_image.RadiopharmaceuticalInformationSequence[
0
]
.RadionuclideCodeSequence[0]
.CodeValue,
headers.radionuclide_meaning: projection_image.RadiopharmaceuticalInformationSequence[
0
]
.RadionuclideCodeSequence[0]
.CodeMeaning,
headers.energy_window_peak_lower: energy_windows[0][0],
headers.energy_window_peak_upper: energy_windows[0][1],
headers.energy_window_scatter_lower: energy_windows[1][0],
headers.energy_window_scatter_upper: energy_windows[1][1],
headers.detector_count: len(projection_image.DetectorInformationSequence),
headers.collimator_type: projection_image.DetectorInformationSequence[
0
].CollimatorType,
headers.rotation_start: float(
projection_image.RotationInformationSequence[0].StartAngle
),
headers.rotation_step: float(
projection_image.RotationInformationSequence[0].AngularStep
),
headers.rotation_scan_arc: float(
projection_image.RotationInformationSequence[0].ScanArc
),
headers.file_recon_ac: "filename_recon_ac.dcm",
headers.file_recon_no_ac: "filename_recon_no_ac.dcm",
headers.file_mu_map: "filanem_mu_map.dcm",
}
_id += 1
row = pd.DataFrame(row, index=[0])
data = pd.concat((data, row), ignore_index=True)
data.to_csv(args.csv, index=False)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment