Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
59c2f1ed
Commit
59c2f1ed
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
add script to prepare a dataset from dicom directories
parent
dec37349
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/data/prepare.py
+414
-0
414 additions, 0 deletions
mu_map/data/prepare.py
with
414 additions
and
0 deletions
mu_map/data/prepare.py
0 → 100644
+
414
−
0
View file @
59c2f1ed
import
argparse
from
datetime
import
datetime
,
timedelta
from
enum
import
Enum
import
os
from
typing
import
List
import
numpy
as
np
import
pandas
as
pd
import
pydicom
class
MyocardialProtocol
(
Enum
):
Stress
=
1
Rest
=
2
headers
=
argparse
.
Namespace
()
headers
.
id
=
"
id
"
headers
.
patient_id
=
"
patient_id
"
headers
.
age
=
"
age
"
headers
.
weight
=
"
weight
"
headers
.
size
=
"
size
"
headers
.
protocol
=
"
protocol
"
headers
.
datetime_acquisition
=
"
datetime_acquisition
"
headers
.
datetime_reconstruction
=
"
datetime_reconstruction
"
headers
.
pixel_spacing_x
=
"
pixel_spacing_x
"
headers
.
pixel_spacing_y
=
"
pixel_spacing_y
"
headers
.
pixel_spacing_z
=
"
pixel_spacing_z
"
headers
.
shape_x
=
"
shape_x
"
headers
.
shape_y
=
"
shape_y
"
headers
.
shape_z
=
"
shape_z
"
headers
.
radiopharmaceutical
=
"
radiopharmaceutical
"
headers
.
radionuclide_dose
=
"
radionuclide_dose
"
headers
.
radionuclide_code
=
"
radionuclide_code
"
headers
.
radionuclide_meaning
=
"
radionuclide_meaning
"
headers
.
energy_window_peak_lower
=
"
energy_window_peak_lower
"
headers
.
energy_window_peak_upper
=
"
energy_window_peak_upper
"
headers
.
energy_window_scatter_lower
=
"
energy_window_scatter_lower
"
headers
.
energy_window_scatter_upper
=
"
energy_window_scatter_upper
"
headers
.
detector_count
=
"
detector_count
"
headers
.
collimator_type
=
"
collimator_type
"
headers
.
rotation_start
=
"
rotation_start
"
headers
.
rotation_step
=
"
rotation_step
"
headers
.
rotation_scan_arc
=
"
rotation_scan_arc
"
headers
.
file_recon_ac
=
"
file_recon_ac
"
headers
.
file_recon_no_ac
=
"
file_recon_no_ac
"
headers
.
file_mu_map
=
"
file_mu_map
"
def
parse_series_time
(
dicom_image
:
pydicom
.
dataset
.
FileDataset
)
->
datetime
:
"""
Parse the date and time of a DICOM series object into a datetime object.
:param dicom_image: the dicom file to parse the series date and time from
:return: an according python datetime object.
"""
_date
=
dicom_image
.
SeriesDate
_time
=
dicom_image
.
SeriesTime
return
datetime
(
year
=
int
(
_date
[
0
:
4
]),
month
=
int
(
_date
[
4
:
6
]),
day
=
int
(
_date
[
6
:
8
]),
hour
=
int
(
_time
[
0
:
2
]),
minute
=
int
(
_time
[
2
:
4
]),
second
=
int
(
_time
[
4
:
6
]),
microsecond
=
int
(
_time
.
split
(
"
.
"
)[
1
]),
)
def
parse_age
(
patient_age
:
str
)
->
int
:
"""
Parse and age string as defined in the DICOM standard into an integer representing the age in years.
:param patient_age: age string as defined in the DICOM standard
:return: the age in years as a number
"""
assert
(
type
(
patient_age
)
==
str
),
f
"
patient age needs to be a string and not
{
type
(
patient_age
)
}
"
assert
(
len
(
patient_age
)
==
4
),
f
"
patient age [
{
patient_age
}
] has to be four characters long
"
_num
,
_format
=
patient_age
[:
3
],
patient_age
[
3
]
assert
(
_format
==
"
Y
"
),
f
"
currently, only patient ages in years [Y] is supported, not [
{
_format
}
]
"
return
int
(
_num
)
def
get_projection
(
dicom_images
:
List
[
pydicom
.
dataset
.
FileDataset
],
protocol
:
MyocardialProtocol
)
->
pydicom
.
dataset
.
FileDataset
:
"""
Extract the SPECT projection from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images
=
filter
(
lambda
image
:
"
TOMO
"
in
image
.
ImageType
,
dicom_images
)
dicom_images
=
filter
(
lambda
image
:
protocol
.
name
in
image
.
SeriesDescription
,
dicom_images
)
dicom_images
=
list
(
dicom_images
)
if
len
(
dicom_images
)
!=
1
:
raise
ValueError
(
f
"
No or multiple projections
{
len
(
dicom_images
)
}
for protocol
{
protocol
.
name
}
available
"
)
return
dicom_images
[
0
]
def
get_reconstruction
(
dicom_images
:
List
[
pydicom
.
dataset
.
FileDataset
],
protocol
:
MyocardialProtocol
,
corrected
:
bool
=
True
)
->
pydicom
.
dataset
.
FileDataset
:
"""
Extract a SPECT reconstruction from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
The corrected flag can be used to either extract an attenuation corrected or a non-attenuation corrected image.
If there are multiple images, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:param corrected: extract an attenuation or non-attenuation corrected image
:return: the extracted DICOM image
"""
dicom_images
=
filter
(
lambda
image
:
"
RECON TOMO
"
in
image
.
ImageType
,
dicom_images
)
dicom_images
=
filter
(
lambda
image
:
protocol
.
name
in
image
.
SeriesDescription
,
dicom_images
)
if
corrected
:
dicom_images
=
filter
(
lambda
image
:
"
AC
"
in
image
.
SeriesDescription
and
"
NoAC
"
not
in
image
.
SeriesDescription
,
dicom_images
,
)
dicom_images
=
list
(
dicom_images
)
else
:
dicom_images
=
filter
(
lambda
image
:
"
NoAC
"
in
image
.
SeriesDescription
,
dicom_images
)
# for SPECT reconstructions created in clinical studies this value exists and is set to 'APEX_TO_BASE'
# for the reconstructions with attenuation maps it does not exist
dicom_images
=
filter
(
lambda
image
:
not
hasattr
(
image
,
"
SliceProgressionDirection
"
),
dicom_images
)
dicom_images
=
list
(
dicom_images
)
dicom_images
.
sort
(
key
=
lambda
image
:
parse_series_time
(
image
),
reverse
=
True
)
if
len
(
dicom_images
)
==
0
:
_str
=
"
AC
"
if
corrected
else
"
NoAC
"
raise
ValueError
(
f
"
{
_str
}
Reconstruction for protocol
{
protocol
.
name
}
is not available
"
)
return
dicom_images
[
0
]
def
get_attenuation_map
(
dicom_images
:
List
[
pydicom
.
dataset
.
FileDataset
],
protocol
:
MyocardialProtocol
)
->
pydicom
.
dataset
.
FileDataset
:
"""
Extract an attenuation map from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
If there are multiple attenuation maps, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images
=
filter
(
lambda
image
:
"
RECON TOMO
"
in
image
.
ImageType
,
dicom_images
)
dicom_images
=
filter
(
lambda
image
:
protocol
.
name
in
image
.
SeriesDescription
,
dicom_images
)
dicom_images
=
filter
(
lambda
image
:
"
µ-map
"
in
image
.
SeriesDescription
,
dicom_images
)
dicom_images
=
list
(
dicom_images
)
dicom_images
.
sort
(
key
=
lambda
image
:
parse_series_time
(
image
),
reverse
=
True
)
if
len
(
dicom_images
)
==
0
:
raise
ValueError
(
f
"
Attenuation map for protocol
{
protocol
.
name
}
is not available
"
)
return
dicom_images
[
0
]
if
__name__
==
"
__main__
"
:
parser
=
argparse
.
ArgumentParser
(
description
=
"
Prepare a dataset from DICOM directories
"
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
)
parser
.
add_argument
(
"
dicom_dirs
"
,
type
=
str
,
nargs
=
"
+
"
,
help
=
"
paths to DICOMDIR files or directories containing one of them
"
,
)
parser
.
add_argument
(
"
--dataset_dir
"
,
type
=
str
,
required
=
True
,
help
=
""
)
parser
.
add_argument
(
"
--images_dir
"
,
type
=
str
,
default
=
"
images
"
,
help
=
""
)
parser
.
add_argument
(
"
--csv
"
,
type
=
str
,
default
=
"
data.csv
"
,
help
=
""
)
parser
.
add_argument
(
"
--prefix_projection
"
,
type
=
str
,
default
=
"
projection
"
,
help
=
""
)
parser
.
add_argument
(
"
--prefix_mu_map
"
,
type
=
str
,
default
=
"
mu_map
"
,
help
=
""
)
parser
.
add_argument
(
"
--prefix_recon_ac
"
,
type
=
str
,
default
=
"
recon_ac
"
,
help
=
""
)
parser
.
add_argument
(
"
--prefix_recon_no_ac
"
,
type
=
str
,
default
=
"
recon_no_ac
"
,
help
=
""
)
args
=
parser
.
parse_args
()
args
.
dicom_dirs
=
[
(
os
.
path
.
dirname
(
_file
)
if
os
.
path
.
isfile
(
_file
)
else
_file
)
for
_file
in
args
.
dicom_dirs
]
args
.
images_dir
=
os
.
path
.
join
(
args
.
dataset_dir
,
args
.
images_dir
)
args
.
csv
=
os
.
path
.
join
(
args
.
dataset_dir
,
args
.
csv
)
patients
=
[]
dicom_dir_by_patient
=
{}
for
dicom_dir
in
args
.
dicom_dirs
:
dataset
=
pydicom
.
dcmread
(
os
.
path
.
join
(
dicom_dir
,
"
DICOMDIR
"
))
for
patient
in
dataset
.
patient_records
:
assert
(
patient
.
PatientID
not
in
dicom_dir_by_patient
),
f
"
Patient
{
patient
.
PatientID
}
is contained twice in the given DICOM directories (
{
dicom_dir
}
and
{
dicom_dir_by_patient
[
patient
.
PatientID
]
}
)
"
dicom_dir_by_patient
[
patient
.
PatientID
]
=
dicom_dir
patients
.
append
(
patient
)
if
not
os
.
path
.
exists
(
args
.
dataset_dir
):
os
.
mkdir
(
args
.
dataset_dir
)
if
not
os
.
path
.
exists
(
args
.
images_dir
):
os
.
mkdir
(
args
.
images_dir
)
_id
=
1
if
os
.
path
.
exists
(
args
.
csv
):
data
=
pd
.
read_csv
(
args
.
csv
)
_id
=
int
(
data
[
headers
.
id
].
max
())
else
:
data
=
pd
.
DataFrame
(
dict
([(
key
,
[])
for
key
in
vars
(
headers
).
keys
()]))
for
i
,
patient
in
enumerate
(
patients
,
start
=
1
):
print
(
f
"
Process patient
{
str
(
i
)
:
>
3
}
/
{
len
(
patients
)
}
:
"
)
# get all myocardial scintigraphy studies
studies
=
list
(
filter
(
lambda
child
:
child
.
DirectoryRecordType
==
"
STUDY
"
and
child
.
StudyDescription
==
"
Myokardszintigraphie
"
,
patient
.
children
,
)
)
# extract all dicom images
dicom_images
=
[]
for
study
in
studies
:
series
=
list
(
filter
(
lambda
child
:
child
.
DirectoryRecordType
==
"
SERIES
"
,
study
.
children
)
)
for
_series
in
series
:
images
=
list
(
filter
(
lambda
child
:
child
.
DirectoryRecordType
==
"
IMAGE
"
,
_series
.
children
)
)
# all SPECT data is stored as a single 3D array which means that it is a series with a single image
# this is not the case for CTs, which are skipped here
if
len
(
images
)
!=
1
:
continue
images
=
list
(
map
(
lambda
image
:
pydicom
.
dcmread
(
os
.
path
.
join
(
dicom_dir_by_patient
[
patient
.
PatientID
],
*
image
.
ReferencedFileID
),
stop_before_pixels
=
True
,
),
images
,
)
)
if
len
(
images
)
==
0
:
continue
dicom_images
.
append
(
images
[
0
])
for
protocol
in
MyocardialProtocol
:
if
len
(
data
[(
data
[
headers
.
patient_id
]
==
patient
.
PatientID
)
&
(
data
[
headers
.
protocol
]
==
protocol
.
name
)])
>
0
:
print
(
f
"
Skip
{
patient
.
PatientID
}
:
{
protocol
.
name
}
since it is already contained in the dataset
"
)
continue
try
:
projection_image
=
get_projection
(
dicom_images
,
protocol
=
protocol
)
recon_ac
=
get_reconstruction
(
dicom_images
,
protocol
=
protocol
,
corrected
=
True
)
recon_noac
=
get_reconstruction
(
dicom_images
,
protocol
=
protocol
,
corrected
=
False
)
attenuation_map
=
get_attenuation_map
(
dicom_images
,
protocol
=
protocol
)
except
ValueError
as
e
:
print
(
f
"
Skip
{
patient
.
PatientID
}
:
{
protocol
.
name
}
because
{
e
}
"
)
continue
recon_images
=
[
recon_ac
,
recon_noac
,
attenuation_map
]
# extract date times and assert that they are equal for all reconstruction images
datetimes
=
list
(
map
(
parse_series_time
,
recon_images
))
_datetimes
=
sorted
(
datetimes
,
reverse
=
True
)
_datetimes_delta
=
list
(
map
(
lambda
dt
:
_datetimes
[
0
]
-
dt
,
_datetimes
))
_equal
=
all
(
map
(
lambda
dt
:
dt
<
timedelta
(
seconds
=
300
),
_datetimes_delta
))
assert
(
_equal
),
f
"
Not all dates and times of the reconstructions are equal:
{
datetimes
}
"
# extract pixel spacings and assert that they are equal for all reconstruction images
pixel_spacings
=
map
(
lambda
image
:
[
*
image
.
PixelSpacing
,
image
.
SliceThickness
],
recon_images
)
pixel_spacings
=
map
(
lambda
pixel_spacing
:
list
(
map
(
float
,
pixel_spacing
)),
pixel_spacings
)
pixel_spacings
=
map
(
lambda
pixel_spacing
:
np
.
array
(
pixel_spacing
),
pixel_spacings
)
pixel_spacings
=
list
(
pixel_spacings
)
_equal
=
all
(
map
(
lambda
pixel_spacing
:
(
pixel_spacing
==
pixel_spacings
[
0
]).
all
(),
pixel_spacings
,
)
)
assert
(
_equal
),
f
"
Not all pixel spacings of the reconstructions are equal:
{
pixel_spacings
}
"
pixel_spacing
=
pixel_spacings
[
0
]
# extract shapes and assert that they are equal for all reconstruction images
shapes
=
map
(
lambda
image
:
[
image
.
Rows
,
image
.
Columns
,
image
.
NumberOfSlices
],
recon_images
,
)
shapes
=
map
(
lambda
shape
:
list
(
map
(
int
,
shape
)),
shapes
)
shapes
=
map
(
lambda
shape
:
np
.
array
(
shape
),
shapes
)
shapes
=
list
(
shapes
)
_equal
=
all
(
map
(
lambda
shape
:
(
shape
==
shapes
[
0
]).
all
(),
shapes
))
# assert _equal, f"Not all shapes of the reconstructions are equal: {shapes}"
# print(shapes)
shape
=
shapes
[
0
]
# exctract and sort energy windows
energy_windows
=
projection_image
.
EnergyWindowInformationSequence
energy_windows
=
map
(
lambda
ew
:
ew
.
EnergyWindowRangeSequence
[
0
],
energy_windows
)
energy_windows
=
map
(
lambda
ew
:
(
float
(
ew
.
EnergyWindowLowerLimit
),
float
(
ew
.
EnergyWindowUpperLimit
),
),
energy_windows
,
)
energy_windows
=
list
(
energy_windows
)
energy_windows
.
sort
(
key
=
lambda
ew
:
ew
[
0
],
reverse
=
True
)
# re-read images with pixel-level data and save accordingly
projection_image
=
pydicom
.
dcmread
(
projection_image
.
filename
)
recon_ac
=
pydicom
.
dcmread
(
recon_ac
.
filename
)
recon_noac
=
pydicom
.
dcmread
(
recon_noac
.
filename
)
attenuation_map
=
pydicom
.
dcmread
(
attenuation_map
.
filename
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_projection
}
.dcm
"
),
projection_image
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_recon_ac
}
.dcm
"
),
recon_ac
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_recon_no_ac
}
.dcm
"
),
recon_noac
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_mu_map
}
.dcm
"
),
attenuation_map
)
row
=
{
headers
.
id
:
_id
,
headers
.
patient_id
:
projection_image
.
PatientID
,
headers
.
age
:
parse_age
(
projection_image
.
PatientAge
),
headers
.
weight
:
float
(
projection_image
.
PatientWeight
),
headers
.
size
:
float
(
projection_image
.
PatientSize
),
headers
.
protocol
:
protocol
.
name
,
headers
.
datetime_acquisition
:
parse_series_time
(
projection_image
),
headers
.
datetime_reconstruction
:
datetimes
[
0
],
headers
.
pixel_spacing_x
:
pixel_spacing
[
0
],
headers
.
pixel_spacing_y
:
pixel_spacing
[
1
],
headers
.
pixel_spacing_z
:
pixel_spacing
[
2
],
headers
.
shape_x
:
shape
[
0
],
headers
.
shape_y
:
shape
[
1
],
headers
.
shape_z
:
shape
[
2
],
headers
.
radiopharmaceutical
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
].
Radiopharmaceutical
,
headers
.
radionuclide_dose
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
].
RadionuclideTotalDose
,
headers
.
radionuclide_code
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
]
.
RadionuclideCodeSequence
[
0
]
.
CodeValue
,
headers
.
radionuclide_meaning
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
]
.
RadionuclideCodeSequence
[
0
]
.
CodeMeaning
,
headers
.
energy_window_peak_lower
:
energy_windows
[
0
][
0
],
headers
.
energy_window_peak_upper
:
energy_windows
[
0
][
1
],
headers
.
energy_window_scatter_lower
:
energy_windows
[
1
][
0
],
headers
.
energy_window_scatter_upper
:
energy_windows
[
1
][
1
],
headers
.
detector_count
:
len
(
projection_image
.
DetectorInformationSequence
),
headers
.
collimator_type
:
projection_image
.
DetectorInformationSequence
[
0
].
CollimatorType
,
headers
.
rotation_start
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
StartAngle
),
headers
.
rotation_step
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
AngularStep
),
headers
.
rotation_scan_arc
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
ScanArc
),
headers
.
file_recon_ac
:
"
filename_recon_ac.dcm
"
,
headers
.
file_recon_no_ac
:
"
filename_recon_no_ac.dcm
"
,
headers
.
file_mu_map
:
"
filanem_mu_map.dcm
"
,
}
_id
+=
1
row
=
pd
.
DataFrame
(
row
,
index
=
[
0
])
data
=
pd
.
concat
((
data
,
row
),
ignore_index
=
True
)
data
.
to_csv
(
args
.
csv
,
index
=
False
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment