Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
656911cc
Commit
656911cc
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
lots of updates to cgan random serach
parent
0d2cde7e
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/training/random_search.py
+103
-38
103 additions, 38 deletions
mu_map/training/random_search.py
with
103 additions
and
38 deletions
mu_map/training/random_search.py
+
103
−
38
View file @
656911cc
...
...
@@ -2,11 +2,12 @@
Implementation of random search for hyper parameter optimization.
"""
import
json
import
logging
import
os
import
random
import
shutil
import
sys
from
typing
import
Any
,
Callable
,
Dict
,
List
,
Optional
from
typing
import
Any
,
Callable
,
Dict
,
List
,
Optional
,
Tuple
import
numpy
as
np
import
pandas
as
pd
...
...
@@ -32,6 +33,7 @@ class ParamSampler:
"""
Abstract class to sample a parameter.
"""
def
sample
(
self
)
->
Any
:
"""
Create a new value for a parameter.
...
...
@@ -43,6 +45,7 @@ class ChoiceSampler(ParamSampler):
"""
Sample from a list of choices.
"""
def
__init__
(
self
,
values
:
List
[
Any
]):
"""
Create a new choice sampler.
...
...
@@ -64,6 +67,7 @@ class DependentChoiceSampler(ChoiceSampler):
"""
A choice sampler that depends on other parameters.
"""
def
__init__
(
self
,
build_choices
:
Callable
[[
Any
],
List
[
Any
]]):
"""
Create a dependent choice sampler.
...
...
@@ -104,6 +108,7 @@ class FloatIntervalSampler(ParamSampler):
"""
Sample a value from a float interval.
"""
def
__init__
(
self
,
min_val
:
float
,
max_val
:
float
):
"""
Create a new float interval sampler.
...
...
@@ -126,6 +131,7 @@ class IntIntervalSampler(ParamSampler):
"""
Sample a value from an integer interval.
"""
def
__init__
(
self
,
min_val
:
int
,
max_val
:
int
):
"""
Create a new int interval sampler.
...
...
@@ -170,11 +176,12 @@ class RandomSearch:
"""
Abstract implementation of a random search.
"""
def
__init__
(
self
,
param_sampler
=
Dict
[
str
,
ParamSampler
]):
"""
Create a new random sampler.
:param param_sampler: a dict of name and parameter sampler pairs
:param param_sampler: a dict of name and parameter sampler pairs
all of them are sampled for a single random search run
"""
self
.
param_sampler
=
param_sampler
...
...
@@ -195,7 +202,9 @@ class RandomSearch:
_params
[
key
]
=
param
return
_params
def
serialize_params
(
self
,
params
:
Dict
[
str
,
Any
],
filename
:
Optional
[
str
]
=
None
)
->
str
:
def
serialize_params
(
self
,
params
:
Dict
[
str
,
Any
],
filename
:
Optional
[
str
]
=
None
)
->
str
:
"""
Serialize is a set of parameters to json and dump them into a file.
...
...
@@ -227,24 +236,42 @@ def validate_and_make_directory(_dir: str):
print
(
f
"
Directory
{
_dir
}
exists and is unexpectedly not empty!
"
)
exit
(
1
)
def
init_from_dir
(
_dir
:
str
,
logger
:
logging
.
Logger
)
->
Tuple
[
int
,
float
]:
last_run
=
os
.
listdir
(
_dir
)
# filter non-directories
last_run
=
filter
(
lambda
f
:
os
.
path
.
isdir
(
os
.
path
.
join
(
_dir
,
f
)),
last_run
)
# filter symlinks
last_run
=
filter
(
lambda
f
:
not
os
.
path
.
islink
(
os
.
path
.
join
(
_dir
,
f
)),
last_run
)
last_run
=
list
(
map
(
int
,
last_run
))
if
len
(
last_run
)
==
0
:
return
1
,
sys
.
maxsize
last_run
=
max
(
last_run
)
min_loss
=
pd
.
read_csv
(
os
.
path
.
join
(
_dir
,
"
best
"
,
"
measures.csv
"
))
min_loss
=
min_loss
[
"
NMAE
"
].
mean
()
logger
.
info
(
f
"
Continue existing random search from run
{
last_run
}
and minimal NMAE
{
min_loss
}
"
)
return
last_run
+
1
,
min_loss
class
RandomSearchCGAN
(
RandomSearch
):
"""
Implementation of a random search for cGAN training.
"""
def
__init__
(
self
,
iterations
:
int
,
logger
=
None
):
super
().
__init__
({})
self
.
dataset_dir
=
"
data/second
"
self
.
iterations
=
iterations
self
.
device
=
torch
.
device
(
"
cuda
"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"
cpu
"
)
self
.
n_slices
=
32
self
.
params
=
{}
self
.
device
=
(
torch
.
device
(
"
cuda
"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"
cpu
"
)
)
self
.
dir
=
"
cgan_random_search
"
validate_and_make_directory
(
self
.
dir
)
if
not
os
.
path
.
exists
(
self
.
dir
):
os
.
mkdir
(
self
.
dir
)
self
.
dir_train
=
os
.
path
.
join
(
self
.
dir
,
"
train_data
"
)
self
.
logger
=
(
logger
if
logger
is
not
None
...
...
@@ -254,36 +281,57 @@ class RandomSearchCGAN(RandomSearch):
name
=
RandomSearchCGAN
.
__name__
,
)
)
self
.
n_slices
=
32
self
.
params
=
{}
self
.
dir_train
=
os
.
path
.
join
(
self
.
dir
,
"
train_data
"
)
self
.
start
,
self
.
nmae_min
=
init_from_dir
(
self
.
dir
,
self
.
logger
)
self
.
training
:
cGANTraining
=
None
def
patch_number
(
patch_size
:
int
,
**
kwargs
):
if
patch_size
==
32
:
return
list
(
range
(
50
,
101
))
else
:
return
list
(
range
(
25
,
51
))
# dataset parameters
self
.
param_sampler
[
"
patch_size
"
]
=
ChoiceSampler
([
32
,
64
])
self
.
param_sampler
[
"
patch_offset
"
]
=
ChoiceSampler
([
0
])
self
.
param_sampler
[
"
patch_number
"
]
=
IntIntervalSampler
(
min_val
=
50
,
max_val
=
100
)
self
.
param_sampler
[
"
patch_number
"
]
=
DependentChoiceSampler
(
patch_number
)
self
.
param_sampler
[
"
scatter_correction
"
]
=
ChoiceSampler
([
False
])
self
.
param_sampler
[
"
shuffle
"
]
=
ChoiceSampler
([
False
,
True
])
self
.
param_sampler
[
"
normalization
"
]
=
ChoiceSampler
(
[
MeanNormTransform
(),
MaxNormTransform
(),
GaussianNormTransform
()]
)
self
.
param_sampler
[
"
pad_crop
"
]
=
ChoiceSampler
([
None
,
PadCropTranform
(
dim
=
3
,
size
=
self
.
n_slices
)])
self
.
param_sampler
[
"
pad_crop
"
]
=
ChoiceSampler
(
[
None
,
PadCropTranform
(
dim
=
3
,
size
=
self
.
n_slices
)]
)
# model parameters
self
.
param_sampler
[
"
discriminator_type
"
]
=
ChoiceSampler
([
"
class
"
,
"
patch
"
])
def
discriminator_conv_features
(
discriminator_type
:
str
,
**
kwargs
):
if
discriminator_type
==
"
class
"
:
return
[[
32
,
64
,
128
],
[
64
,
128
,
256
],
[
32
,
64
,
128
,
256
]]
else
:
return
[[
32
,
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]]
self
.
param_sampler
[
"
discriminator_conv_features
"
]
=
DependentChoiceSampler
(
discriminator_conv_features
)
self
.
param_sampler
[
"
generator_features
"
]
=
ChoiceSampler
([
[
64
,
128
,
256
,
512
],
[
32
,
64
,
128
,
256
,
512
],
])
self
.
param_sampler
[
"
discriminator_conv_features
"
]
=
DependentChoiceSampler
(
discriminator_conv_features
)
self
.
param_sampler
[
"
generator_features
"
]
=
ChoiceSampler
(
[
[
64
,
128
,
256
,
512
],
[
32
,
64
,
128
,
256
,
512
],
]
)
# training parameters
self
.
param_sampler
[
"
epochs
"
]
=
ChoiceSampler
([
50
,
60
,
70
,
80
,
90
])
self
.
param_sampler
[
"
epochs
"
]
=
ChoiceSampler
([
100
])
def
batch_size
(
patch_size
:
int
,
**
kwargs
):
return
[
32
]
if
patch_size
==
64
else
[
64
]
# self.param_sampler["batch_size"] = ChoiceSampler([32, 64])
self
.
param_sampler
[
"
batch_size
"
]
=
DependentChoiceSampler
(
batch_size
)
self
.
param_sampler
[
"
lr
"
]
=
FloatIntervalSampler
(
0.1
,
0.0001
)
...
...
@@ -293,12 +341,20 @@ class RandomSearchCGAN(RandomSearch):
self
.
param_sampler
[
"
criterion_dist
"
]
=
ChoiceSampler
(
[
WeightedLoss
.
from_str
(
"
L1
"
),
WeightedLoss
.
from_str
(
"
L2+GDL
"
)]
)
self
.
param_sampler
[
"
weight_criterion_dist
"
]
=
ChoiceSampler
([
1.0
,
20.0
,
100.0
])
self
.
param_sampler
[
"
weight_criterion_adv
"
]
=
ChoiceSampler
([
1.0
,
20.0
,
100.0
])
self
.
param_sampler
[
"
weight_criterions
"
]
=
ChoiceSampler
(
[
(
100.0
,
1.0
),
(
20.0
,
1.0
),
(
5.0
,
1.0
),
(
1.0
,
1.0
),
(
1.0
,
5.0
),
(
1.0
,
20.0
),
(
1.0
,
100.0
),
]
)
def
run
(
self
):
nmae_min
=
sys
.
maxsize
for
i
in
range
(
1
,
self
.
iterations
+
1
):
for
i
in
range
(
self
.
start
,
self
.
start
+
self
.
iterations
+
1
):
self
.
logger
.
info
(
f
"
Train iteration
{
i
}
"
)
seed
=
random
.
randint
(
0
,
2
**
32
-
1
)
...
...
@@ -312,11 +368,11 @@ class RandomSearchCGAN(RandomSearch):
nmae
=
self
.
eval_run
()
self
.
logger
.
info
(
f
"
Iteration
{
i
}
has NMAE
{
nmae
:
.
6
f
}
"
)
if
nmae
<
nmae_min
:
if
nmae
<
self
.
nmae_min
:
self
.
logger
.
info
(
f
"
New best run at iteration
{
i
}
"
)
nmae_min
=
nmae
self
.
nmae_min
=
nmae
self
.
_cleanup_run
(
i
,
link_best
=
(
nmae_min
==
nmae
))
return
nmae_min
return
self
.
nmae_min
def
eval_run
(
self
):
self
.
logger
.
debug
(
"
Perform evaluation ...
"
)
...
...
@@ -362,25 +418,33 @@ class RandomSearchCGAN(RandomSearch):
self
.
logger
.
debug
(
f
"
Init dataset ...
"
)
dataset
=
MuMapPatchDataset
(
self
.
dataset_dir
,
patches_per_image
=
self
.
params
[
"
patch_number
"
],
patch_size
=
self
.
params
[
"
patch_size
"
],
patch_size_z
=
self
.
n_slices
,
patch_offset
=
self
.
params
[
"
patch_offset
"
],
shuffle
=
self
.
params
[
"
shuffle
"
],
transform_normalization
=
transform_normalization
,
scatter_correction
=
self
.
params
[
"
scatter_correction
"
],
logger
=
logger
,
self
.
dataset_dir
,
patches_per_image
=
self
.
params
[
"
patch_number
"
],
patch_size
=
self
.
params
[
"
patch_size
"
],
patch_size_z
=
self
.
n_slices
,
patch_offset
=
self
.
params
[
"
patch_offset
"
],
shuffle
=
self
.
params
[
"
shuffle
"
],
transform_normalization
=
transform_normalization
,
scatter_correction
=
self
.
params
[
"
scatter_correction
"
],
logger
=
logger
,
)
self
.
logger
.
debug
(
f
"
Init discriminator ....
"
)
input_size
=
(
self
.
n_slices
,
self
.
params
[
"
patch_size
"
],
self
.
params
[
"
patch_size
"
])
input_size
=
(
self
.
n_slices
,
self
.
params
[
"
patch_size
"
],
self
.
params
[
"
patch_size
"
],
)
if
self
.
params
[
"
discriminator_type
"
]
==
"
class
"
:
discriminator
=
Discriminator
(
in_channels
=
2
,
input_size
=
input_size
,
conv_features
=
self
.
params
[
"
discriminator_conv_features
"
],
in_channels
=
2
,
input_size
=
input_size
,
conv_features
=
self
.
params
[
"
discriminator_conv_features
"
],
)
else
:
discriminator
=
PatchDiscriminator
(
in_channels
=
2
,
features
=
self
.
params
[
"
discriminator_conv_features
"
])
discriminator
=
PatchDiscriminator
(
in_channels
=
2
,
features
=
self
.
params
[
"
discriminator_conv_features
"
]
)
discriminator
=
discriminator
.
to
(
self
.
device
)
optimizer
=
torch
.
optim
.
Adam
(
...
...
@@ -418,6 +482,7 @@ class RandomSearchCGAN(RandomSearch):
model
=
generator
,
optimizer
=
optimizer
,
lr_scheduler
=
lr_scheduler
)
weight_crit_dist
,
weight_crit_adv
=
self
.
params
[
"
weight_criterions
"
]
self
.
logger
.
debug
(
f
"
Init training ....
"
)
self
.
training
=
cGANTraining
(
epochs
=
self
.
params
[
"
epochs
"
],
...
...
@@ -430,8 +495,8 @@ class RandomSearchCGAN(RandomSearch):
params_generator
=
params_g
,
params_discriminator
=
params_d
,
loss_func_dist
=
self
.
params
[
"
criterion_dist
"
],
weight_criterion_dist
=
self
.
params
[
"
weight_crit
erion
_dist
"
]
,
weight_criterion_adv
=
self
.
params
[
"
weight_crit
erion
_adv
"
]
,
weight_criterion_dist
=
weight_crit_dist
,
weight_criterion_adv
=
weight_crit_adv
,
early_stopping
=
10
,
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment