Skip to content
Snippets Groups Projects
Commit 6a73a952 authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

implement usage of Dataframe in eval

parent c1e168fd
No related branches found
No related tags found
No related merge requests found
...@@ -94,7 +94,7 @@ if __name__ == "__main__": ...@@ -94,7 +94,7 @@ if __name__ == "__main__":
) )
measures = {"NMAE": nmae, "MSE": mse} measures = {"NMAE": nmae, "MSE": mse}
values = dict(map(lambda x: (x, []), measures.keys())) values = pd.Dataframe(map(lambda x: (x, []), measures.keys()))
for i, (recon, mu_map) in enumerate(dataset): for i, (recon, mu_map) in enumerate(dataset):
print( print(
f"Process input {str(i):>{len(str(len(dataset)))}}/{len(dataset)}", end="\r" f"Process input {str(i):>{len(str(len(dataset)))}}/{len(dataset)}", end="\r"
...@@ -104,12 +104,12 @@ if __name__ == "__main__": ...@@ -104,12 +104,12 @@ if __name__ == "__main__":
prediction = prediction.squeeze().cpu().numpy() prediction = prediction.squeeze().cpu().numpy()
mu_map = mu_map.squeeze().cpu().numpy() mu_map = mu_map.squeeze().cpu().numpy()
for key, measure in measures.items(): row = dict(
values[key].append(measure(prediction, mu_map)) map(lambda item: (item[0], item[1](prediction, mu_map)), measures.items)
)
values = values.append(row, ignore_index=True)
print(f" " * 100, end="\r") print(f" " * 100, end="\r")
values = dict(map(lambda x: (x[0], np.array(x[1])), values.items()))
print("Scores:") print("Scores:")
for measure_name, measure_values in values.items(): for measure_name, measure_values in values.items():
mean = measure_values.mean() mean = measure_values.mean()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment