Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
7bf09ddd
Commit
7bf09ddd
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
add missing training lib module
parent
e0d463db
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/training/lib.py
+127
-0
127 additions, 0 deletions
mu_map/training/lib.py
with
127 additions
and
0 deletions
mu_map/training/lib.py
0 → 100644
+
127
−
0
View file @
7bf09ddd
from
dataclasses
import
dataclass
import
os
from
typing
import
Dict
import
torch
from
torch
import
Tensor
from
mu_map.dataset.default
import
MuMapDataset
@dataclass
class
TrainingParams
:
name
:
str
model
:
torch
.
nn
.
Module
optimizer
:
torch
.
optim
.
Optimizer
lr_scheduler
:
Optional
[
torch
.
optim
.
lr_scheduler
.
_LRScheduler
]
class
AbstractTraining
:
def
__init__
(
self
,
epochs
:
int
,
dataset
:
MuMapDataset
,
batch_size
:
int
,
device
:
torch
.
device
,
snapshot_dir
:
str
,
snapshot_epoch
:
int
,
logger
=
None
,
):
self
.
epochs
=
epochs
self
.
batch_size
=
batch_size
self
.
dataset
=
dataset
self
.
device
=
device
self
.
snapshot_dir
=
snapshot_dir
self
.
snapshot_epoch
=
snapshot_epoch
self
.
logger
=
logger
self
.
training_params
=
[]
def
run
(
self
)
->
float
:
loss_val_min
=
sys
.
maxsize
for
epoch
in
range
(
1
,
self
.
epochs
+
1
):
str_epoch
=
f
"
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
"
self
.
logger
.
debug
(
f
"
Run epoch
{
str_epoch
}
/
{
self
.
epochs
}
...
"
)
loss_train
=
self
.
_train_epoch
()
self
.
logger
.
info
(
f
"
Epoch
{
str_epoch
}
/
{
self
.
epochs
}
- Loss train:
{
loss_train
:
.
6
f
}
"
)
loss_val
=
self
.
_eval_epoch
()
self
.
logger
.
info
(
f
"
Epoch
{
str_epoch
}
/
{
self
.
epochs
}
- Loss validation:
{
loss_val
:
.
6
f
}
"
)
if
loss_val
<
loss_val_min
:
loss_val_min
=
loss_val
self
.
logger
.
info
(
f
"
Store snapshot val_min of epoch
{
str_epoch
}
with minimal validation loss
"
)
self
.
store_snapshot
(
"
val_min
"
)
if
epoch
%
self
.
snapshot_epoch
==
0
:
self
.
_store_snapshot
(
f
"
{
epoch
:
0
d
{
len
(
str
(
self
.
epochs
))
}}
"
)
for
param
in
self
.
training_params
:
if
param
.
lr_scheduler
is
not
None
:
param
.
lr_scheduler
.
step
()
return
loss_val_min
def
_train_epoch
(
self
):
torch
.
set_grad_enabled
(
True
)
for
param
in
self
.
training_params
:
param
.
model
.
train
()
loss
=
0.0
data_loader
=
self
.
data_loaders
[
"
train
"
]
for
i
,
(
inputs
,
targets
)
in
enumerate
(
data_loader
):
print
(
f
"
Batch
{
str
(
i
)
:
>
{
len
(
str
(
len
(
data_loader
)))
}}
/
{
len
(
data_loader
)
}
"
,
end
=
"
\r
"
,
)
inputs
=
inputs
.
to
(
self
.
device
)
targets
=
targets
.
to
(
self
.
device
)
for
param
in
self
.
training_params
:
param
.
optimizer
.
zero_grad
()
loss
=
loss
+
self
.
_train_batch
(
self
,
inputs
,
targets
)
for
param
in
self
.
training_params
:
param
.
optimizer
.
step
()
return
loss
/
len
(
data_loader
)
def
_eval_epoch
(
self
,
phase
:
str
):
torch
.
set_grad_enabled
(
False
)
for
model
in
self
.
models
:
model
.
eval
()
loss
=
0.0
data_loader
=
self
.
data_loaders
[
"
validation
"
]
for
i
,
(
inputs
,
targets
)
in
enumerate
(
data_loader
):
print
(
f
"
Batch
{
str
(
i
)
:
>
{
len
(
str
(
len
(
data_loader
)))
}}
/
{
len
(
data_loader
)
}
"
,
end
=
"
\r
"
,
)
inputs
=
inputs
.
to
(
self
.
device
)
targets
=
targets
.
to
(
self
.
device
)
loss
=
loss
+
self
.
_eval_batch
(
self
,
inputs
,
targets
)
return
loss
/
len
(
data_loader
)
def
store_snapshot
(
self
,
prefix
:
str
):
for
param
in
self
.
training_params
:
snapshot_file
=
os
.
path
.
join
(
self
.
snapshot_dir
,
f
"
{
prefix
}
_
{
param
.
name
}
.pth
"
)
self
.
logger
.
debug
(
f
"
Store snapshot at
{
snapshot_file
}
"
)
torch
.
save
(
param
.
model
.
state_dict
(),
snapshot_file
)
def
_train_batch
(
self
,
inputs
:
torch
.
Tensor
,
targets
:
torch
.
Tensor
)
->
float
:
return
0
def
_eval_batch
(
self
,
inputs
:
torch
.
Tensor
,
targets
:
torch
.
Tensor
)
->
float
:
return
0
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment