Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
7e9d42da
Commit
7e9d42da
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
adapt preparse script to new study descriptions
parent
a800094d
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/data/prepare.py
+268
-249
268 additions, 249 deletions
mu_map/data/prepare.py
with
268 additions
and
249 deletions
mu_map/data/prepare.py
+
268
−
249
View file @
7e9d42da
...
...
@@ -11,6 +11,9 @@ import pydicom
from
mu_map.logging
import
add_logging_args
,
get_logger_by_args
STUDY_DESCRIPTION
=
"
µ-map_study
"
class
MyocardialProtocol
(
Enum
):
Stress
=
1
Rest
=
2
...
...
@@ -44,6 +47,7 @@ headers.collimator_type = "collimator_type"
headers
.
rotation_start
=
"
rotation_start
"
headers
.
rotation_step
=
"
rotation_step
"
headers
.
rotation_scan_arc
=
"
rotation_scan_arc
"
headers
.
file_projection
=
"
file_projection
"
headers
.
file_recon_ac
=
"
file_recon_ac
"
headers
.
file_recon_no_ac
=
"
file_recon_no_ac
"
headers
.
file_mu_map
=
"
file_mu_map
"
...
...
@@ -128,22 +132,25 @@ def get_reconstruction(
"""
_filter
=
filter
(
lambda
image
:
"
RECON TOMO
"
in
image
.
ImageType
,
dicom_images
)
_filter
=
filter
(
lambda
image
:
protocol
.
name
in
image
.
SeriesDescription
,
dicom_images
lambda
image
:
protocol
.
name
in
image
.
SeriesDescription
,
_filter
)
_filter
=
filter
(
lambda
image
:
STUDY_DESCRIPTION
in
image
.
SeriesDescription
,
_filter
)
if
corrected
:
_filter
=
filter
(
lambda
image
:
"
AC
"
in
image
.
SeriesDescription
and
"
NoAC
"
not
in
image
.
SeriesDescription
,
dicom_images
,
_filter
,
)
else
:
_filter
=
filter
(
lambda
image
:
"
NoAC
"
in
image
.
SeriesDescription
,
dicom_images
)
_filter
=
filter
(
lambda
image
:
"
NoAC
"
in
image
.
SeriesDescription
,
_filter
)
# for SPECT reconstructions created in clinical studies this value exists and is set to 'APEX_TO_BASE'
# for the reconstructions with attenuation maps it does not exist
_filter
=
filter
(
lambda
image
:
not
hasattr
(
image
,
"
SliceProgressionDirection
"
),
dicom_images
lambda
image
:
not
hasattr
(
image
,
"
SliceProgressionDirection
"
),
_filter
)
dicom_images
=
list
(
_filter
)
...
...
@@ -171,9 +178,10 @@ def get_attenuation_map(
"""
_filter
=
filter
(
lambda
image
:
"
RECON TOMO
"
in
image
.
ImageType
,
dicom_images
)
_filter
=
filter
(
lambda
image
:
protocol
.
name
in
image
.
SeriesDescription
,
dicom_images
lambda
image
:
protocol
.
name
in
image
.
SeriesDescription
,
_filter
)
_filter
=
filter
(
lambda
image
:
"
µ-map
"
in
image
.
SeriesDescription
,
dicom_images
)
_filter
=
filter
(
lambda
image
:
STUDY_DESCRIPTION
in
image
.
SeriesDescription
,
_filter
)
_filter
=
filter
(
lambda
image
:
"
µ-map]
"
in
image
.
SeriesDescription
,
_filter
)
dicom_images
=
list
(
_filter
)
dicom_images
.
sort
(
key
=
lambda
image
:
parse_series_time
(
image
),
reverse
=
True
)
...
...
@@ -260,263 +268,274 @@ if __name__ == "__main__":
global
logger
logger
=
get_logger_by_args
(
args
)
patients
=
[]
dicom_dir_by_patient
:
Dict
[
str
,
str
]
=
{}
for
dicom_dir
in
args
.
dicom_dirs
:
dataset
=
pydicom
.
dcmread
(
os
.
path
.
join
(
dicom_dir
,
"
DICOMDIR
"
))
for
patient
in
dataset
.
patient_records
:
assert
(
patient
.
PatientID
not
in
dicom_dir_by_patient
),
f
"
Patient
{
patient
.
PatientID
}
is contained twice in the given DICOM directories (
{
dicom_dir
}
and
{
dicom_dir_by_patient
[
patient
.
PatientID
]
}
)
"
dicom_dir_by_patient
[
patient
.
PatientID
]
=
dicom_dir
patients
.
append
(
patient
)
_id
=
1
if
os
.
path
.
exists
(
args
.
meta_csv
):
data
=
pd
.
read_csv
(
args
.
meta_csv
)
_id
=
int
(
data
[
headers
.
id
].
max
())
else
:
data
=
pd
.
DataFrame
(
dict
([(
key
,
[])
for
key
in
vars
(
headers
).
keys
()]))
for
i
,
patient
in
enumerate
(
patients
,
start
=
1
):
logger
.
debug
(
f
"
Process patient
{
str
(
i
)
:
>
3
}
/
{
len
(
patients
)
}
:
"
)
# get all myocardial scintigraphy studies
studies
=
list
(
filter
(
lambda
child
:
child
.
DirectoryRecordType
==
"
STUDY
"
and
child
.
StudyDescription
==
"
Myokardszintigraphie
"
,
patient
.
children
,
)
)
# extract all dicom images
dicom_images
=
[]
for
study
in
studies
:
series
=
list
(
try
:
patients
=
[]
dicom_dir_by_patient
:
Dict
[
str
,
str
]
=
{}
for
dicom_dir
in
args
.
dicom_dirs
:
dataset
=
pydicom
.
dcmread
(
os
.
path
.
join
(
dicom_dir
,
"
DICOMDIR
"
))
for
patient
in
dataset
.
patient_records
:
assert
(
patient
.
PatientID
not
in
dicom_dir_by_patient
),
f
"
Patient
{
patient
.
PatientID
}
is contained twice in the given DICOM directories (
{
dicom_dir
}
and
{
dicom_dir_by_patient
[
patient
.
PatientID
]
}
)
"
dicom_dir_by_patient
[
patient
.
PatientID
]
=
dicom_dir
patients
.
append
(
patient
)
_id
=
1
if
os
.
path
.
exists
(
args
.
meta_csv
):
data
=
pd
.
read_csv
(
args
.
meta_csv
)
_id
=
int
(
data
[
headers
.
id
].
max
())
else
:
data
=
pd
.
DataFrame
(
dict
([(
key
,
[])
for
key
in
vars
(
headers
).
keys
()]))
for
i
,
patient
in
enumerate
(
patients
,
start
=
1
):
logger
.
debug
(
f
"
Process patient
{
str
(
i
)
:
>
3
}
/
{
len
(
patients
)
}
:
"
)
# get all myocardial scintigraphy studies
studies
=
list
(
filter
(
lambda
child
:
child
.
DirectoryRecordType
==
"
SERIES
"
,
study
.
children
lambda
child
:
child
.
DirectoryRecordType
==
"
STUDY
"
,
# and child.StudyDescription == "Myokardszintigraphie",
patient
.
children
,
)
)
for
_series
in
series
:
images
=
list
(
# extract all dicom images
dicom_images
=
[]
for
study
in
studies
:
series
=
list
(
filter
(
lambda
child
:
child
.
DirectoryRecordType
==
"
IMAGE
"
,
_series
.
children
,
lambda
child
:
child
.
DirectoryRecordType
==
"
SERIES
"
,
study
.
children
)
)
for
_series
in
series
:
images
=
list
(
filter
(
lambda
child
:
child
.
DirectoryRecordType
==
"
IMAGE
"
,
_series
.
children
,
)
)
# all SPECT data is stored as a single 3D array which means that it is a series with a single image
# this is not the case for CTs, which are skipped here
if
len
(
images
)
!=
1
:
continue
images
=
list
(
map
(
lambda
image
:
pydicom
.
dcmread
(
os
.
path
.
join
(
dicom_dir_by_patient
[
patient
.
PatientID
],
*
image
.
ReferencedFileID
,
# all SPECT data is stored as a single 3D array which means that it is a series with a single image
# this is not the case for CTs, which are skipped here
if
len
(
images
)
!=
1
:
continue
images
=
list
(
map
(
lambda
image
:
pydicom
.
dcmread
(
os
.
path
.
join
(
dicom_dir_by_patient
[
patient
.
PatientID
],
*
image
.
ReferencedFileID
,
),
stop_before_pixels
=
True
,
),
stop_before_pixels
=
True
,
),
images
,
images
,
)
)
)
if
len
(
images
)
==
0
:
continue
dicom_images
.
append
(
images
[
0
])
for
protocol
in
MyocardialProtocol
:
if
(
len
(
data
[
(
data
[
headers
.
patient_id
]
==
patient
.
PatientID
)
&
(
data
[
headers
.
protocol
]
==
protocol
.
name
)
]
if
len
(
images
)
==
0
:
continue
dicom_images
.
append
(
images
[
0
])
for
protocol
in
MyocardialProtocol
:
if
(
len
(
data
[
(
data
[
headers
.
patient_id
]
==
patient
.
PatientID
)
&
(
data
[
headers
.
protocol
]
==
protocol
.
name
)
]
)
>
0
):
logger
.
info
(
f
"
Skip
{
patient
.
PatientID
}
:
{
protocol
.
name
}
since it is already contained in the dataset
"
)
continue
try
:
projection_image
=
get_projection
(
dicom_images
,
protocol
=
protocol
)
recon_ac
=
get_reconstruction
(
dicom_images
,
protocol
=
protocol
,
corrected
=
True
)
recon_noac
=
get_reconstruction
(
dicom_images
,
protocol
=
protocol
,
corrected
=
False
)
attenuation_map
=
get_attenuation_map
(
dicom_images
,
protocol
=
protocol
)
except
ValueError
as
e
:
logger
.
info
(
f
"
Skip
{
patient
.
PatientID
}
:
{
protocol
.
name
}
because
{
e
}
"
)
continue
recon_images
=
[
recon_ac
,
recon_noac
,
attenuation_map
]
# extract date times and assert that they are equal for all reconstruction images
datetimes
=
list
(
map
(
parse_series_time
,
recon_images
))
_datetimes
=
sorted
(
datetimes
,
reverse
=
True
)
_datetimes_delta
=
list
(
map
(
lambda
dt
:
_datetimes
[
0
]
-
dt
,
_datetimes
))
_equal
=
all
(
map
(
lambda
dt
:
dt
<
timedelta
(
seconds
=
300
),
_datetimes_delta
)
)
>
0
):
logger
.
info
(
f
"
Skip
{
patient
.
PatientID
}
:
{
protocol
.
name
}
since it is already contained in the dataset
"
assert
(
_equal
),
f
"
Not all dates and times of the reconstructions are equal:
{
datetimes
}
"
# extract pixel spacings and assert that they are equal for all reconstruction images
_map_lists
=
map
(
lambda
image
:
[
*
image
.
PixelSpacing
,
image
.
SliceThickness
],
recon_images
,
)
continue
try
:
projection_image
=
get_projection
(
dicom_images
,
protocol
=
protocol
)
recon_ac
=
get_reconstruction
(
dicom_images
,
protocol
=
protocol
,
corrected
=
True
_map_lists
=
map
(
lambda
pixel_spacing
:
list
(
map
(
float
,
pixel_spacing
)),
_map_lists
)
recon_noac
=
get_reconstruction
(
dicom_images
,
protocol
=
protocol
,
corrected
=
False
_map_ndarrays
=
map
(
lambda
pixel_spacing
:
np
.
array
(
pixel_spacing
),
_map_lists
)
attenuation_map
=
get_attenuation_map
(
dicom_images
,
protocol
=
protocol
pixel_spacings
=
list
(
_map_ndarrays
)
_equal
=
all
(
map
(
lambda
pixel_spacing
:
(
pixel_spacing
==
pixel_spacings
[
0
]
).
all
(),
pixel_spacings
,
)
)
except
ValueError
as
e
:
logger
.
info
(
f
"
Skip
{
patient
.
PatientID
}
:
{
protocol
.
name
}
because
{
e
}
"
)
continue
recon_images
=
[
recon_ac
,
recon_noac
,
attenuation_map
]
# extract date times and assert that they are equal for all reconstruction images
datetimes
=
list
(
map
(
parse_series_time
,
recon_images
))
_datetimes
=
sorted
(
datetimes
,
reverse
=
True
)
_datetimes_delta
=
list
(
map
(
lambda
dt
:
_datetimes
[
0
]
-
dt
,
_datetimes
))
_equal
=
all
(
map
(
lambda
dt
:
dt
<
timedelta
(
seconds
=
300
),
_datetimes_delta
)
)
assert
(
_equal
),
f
"
Not all dates and times of the reconstructions are equal:
{
datetimes
}
"
# extract pixel spacings and assert that they are equal for all reconstruction images
_map_lists
=
map
(
lambda
image
:
[
*
image
.
PixelSpacing
,
image
.
SliceThickness
],
recon_images
,
)
_map_lists
=
map
(
lambda
pixel_spacing
:
list
(
map
(
float
,
pixel_spacing
)),
_map_lists
)
_map_ndarrays
=
map
(
lambda
pixel_spacing
:
np
.
array
(
pixel_spacing
),
_map_lists
)
pixel_spacings
=
list
(
_map_ndarrays
)
_equal
=
all
(
map
(
lambda
pixel_spacing
:
(
pixel_spacing
==
pixel_spacings
[
0
]
).
all
(),
pixel_spacings
,
assert
(
_equal
),
f
"
Not all pixel spacings of the reconstructions are equal:
{
pixel_spacings
}
"
pixel_spacing
=
pixel_spacings
[
0
]
# extract shapes and assert that they are equal for all reconstruction images
_map_lists
=
map
(
lambda
image
:
[
image
.
Rows
,
image
.
Columns
,
image
.
NumberOfSlices
],
recon_images
,
)
_map_lists
=
map
(
lambda
shape
:
list
(
map
(
int
,
shape
)),
_map_lists
)
_map_ndarrays
=
map
(
lambda
shape
:
np
.
array
(
shape
),
_map_lists
)
shapes
=
list
(
_map_ndarrays
)
_equal
=
all
(
map
(
lambda
shape
:
(
shape
==
shapes
[
0
]).
all
(),
shapes
))
# assert _equal, f"Not all shapes of the reconstructions are equal: {shapes}"
# print(shapes)
shape
=
shapes
[
0
]
# exctract and sort energy windows
energy_windows
=
projection_image
.
EnergyWindowInformationSequence
energy_windows
=
map
(
lambda
ew
:
ew
.
EnergyWindowRangeSequence
[
0
],
energy_windows
)
energy_windows
=
map
(
lambda
ew
:
(
float
(
ew
.
EnergyWindowLowerLimit
),
float
(
ew
.
EnergyWindowUpperLimit
),
),
energy_windows
,
)
energy_windows
=
list
(
energy_windows
)
energy_windows
.
sort
(
key
=
lambda
ew
:
ew
[
0
],
reverse
=
True
)
# re-read images with pixel-level data and save accordingly
projection_image
=
pydicom
.
dcmread
(
projection_image
.
filename
)
recon_ac
=
pydicom
.
dcmread
(
recon_ac
.
filename
)
recon_noac
=
pydicom
.
dcmread
(
recon_noac
.
filename
)
attenuation_map
=
pydicom
.
dcmread
(
attenuation_map
.
filename
)
_filename_base
=
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
"
_ext
=
"
dcm
"
_filename_projection
=
f
"
{
_filename_base
}
-
{
args
.
prefix_projection
}
.
{
_ext
}
"
_filename_recon_ac
=
f
"
{
_filename_base
}
-
{
args
.
prefix_recon_ac
}
.
{
_ext
}
"
_filename_recon_no_ac
=
f
"
{
_filename_base
}
-
{
args
.
prefix_recon_no_ac
}
.
{
_ext
}
"
_filename_mu_map
=
f
"
{
_filename_base
}
-
{
args
.
prefix_mu_map
}
.
{
_ext
}
"
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
_filename_projection
,
),
projection_image
,
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
_filename_recon_ac
,
),
recon_ac
,
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
_filename_recon_no_ac
,
),
recon_noac
,
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
_filename_mu_map
,
),
attenuation_map
,
)
)
assert
(
_equal
),
f
"
Not all pixel spacings of the reconstructions are equal:
{
pixel_spacings
}
"
pixel_spacing
=
pixel_spacings
[
0
]
# extract shapes and assert that they are equal for all reconstruction images
_map_lists
=
map
(
lambda
image
:
[
image
.
Rows
,
image
.
Columns
,
image
.
NumberOfSlices
],
recon_images
,
)
_map_lists
=
map
(
lambda
shape
:
list
(
map
(
int
,
shape
)),
_map_lists
)
_map_ndarrays
=
map
(
lambda
shape
:
np
.
array
(
shape
),
_map_lists
)
shapes
=
list
(
_map_ndarrays
)
_equal
=
all
(
map
(
lambda
shape
:
(
shape
==
shapes
[
0
]).
all
(),
shapes
))
# assert _equal, f"Not all shapes of the reconstructions are equal: {shapes}"
# print(shapes)
shape
=
shapes
[
0
]
# exctract and sort energy windows
energy_windows
=
projection_image
.
EnergyWindowInformationSequence
energy_windows
=
map
(
lambda
ew
:
ew
.
EnergyWindowRangeSequence
[
0
],
energy_windows
)
energy_windows
=
map
(
lambda
ew
:
(
float
(
ew
.
EnergyWindowLowerLimit
),
float
(
ew
.
EnergyWindowUpperLimit
),
),
energy_windows
,
)
energy_windows
=
list
(
energy_windows
)
energy_windows
.
sort
(
key
=
lambda
ew
:
ew
[
0
],
reverse
=
True
)
# re-read images with pixel-level data and save accordingly
projection_image
=
pydicom
.
dcmread
(
projection_image
.
filename
)
recon_ac
=
pydicom
.
dcmread
(
recon_ac
.
filename
)
recon_noac
=
pydicom
.
dcmread
(
recon_noac
.
filename
)
attenuation_map
=
pydicom
.
dcmread
(
attenuation_map
.
filename
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_projection
}
.dcm
"
,
),
projection_image
,
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_recon_ac
}
.dcm
"
,
),
recon_ac
,
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_recon_no_ac
}
.dcm
"
,
),
recon_noac
,
)
pydicom
.
dcmwrite
(
os
.
path
.
join
(
args
.
images_dir
,
f
"
{
_id
:
04
d
}
-
{
protocol
.
name
.
lower
()
}
-
{
args
.
prefix_mu_map
}
.dcm
"
,
),
attenuation_map
,
)
row
=
{
headers
.
id
:
_id
,
headers
.
patient_id
:
projection_image
.
PatientID
,
headers
.
age
:
parse_age
(
projection_image
.
PatientAge
),
headers
.
weight
:
float
(
projection_image
.
PatientWeight
),
headers
.
size
:
float
(
projection_image
.
PatientSize
),
headers
.
protocol
:
protocol
.
name
,
headers
.
datetime_acquisition
:
parse_series_time
(
projection_image
),
headers
.
datetime_reconstruction
:
datetimes
[
0
],
headers
.
pixel_spacing_x
:
pixel_spacing
[
0
],
headers
.
pixel_spacing_y
:
pixel_spacing
[
1
],
headers
.
pixel_spacing_z
:
pixel_spacing
[
2
],
headers
.
shape_x
:
shape
[
0
],
headers
.
shape_y
:
shape
[
1
],
headers
.
shape_z
:
shape
[
2
],
headers
.
radiopharmaceutical
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
].
Radiopharmaceutical
,
headers
.
radionuclide_dose
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
].
RadionuclideTotalDose
,
headers
.
radionuclide_code
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
]
.
RadionuclideCodeSequence
[
0
]
.
CodeValue
,
headers
.
radionuclide_meaning
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
]
.
RadionuclideCodeSequence
[
0
]
.
CodeMeaning
,
headers
.
energy_window_peak_lower
:
energy_windows
[
0
][
0
],
headers
.
energy_window_peak_upper
:
energy_windows
[
0
][
1
],
headers
.
energy_window_scatter_lower
:
energy_windows
[
1
][
0
],
headers
.
energy_window_scatter_upper
:
energy_windows
[
1
][
1
],
headers
.
detector_count
:
len
(
projection_image
.
DetectorInformationSequence
),
headers
.
collimator_type
:
projection_image
.
DetectorInformationSequence
[
0
].
CollimatorType
,
headers
.
rotation_start
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
StartAngle
),
headers
.
rotation_step
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
AngularStep
),
headers
.
rotation_scan_arc
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
ScanArc
),
headers
.
file_recon_ac
:
"
filename_recon_ac.dcm
"
,
headers
.
file_recon_no_ac
:
"
filename_recon_no_ac.dcm
"
,
headers
.
file_mu_map
:
"
filanem_mu_map.dcm
"
,
}
_id
+=
1
row
=
pd
.
DataFrame
(
row
,
index
=
[
0
])
data
=
pd
.
concat
((
data
,
row
),
ignore_index
=
True
)
data
.
to_csv
(
args
.
meta_csv
,
index
=
False
)
row
=
{
headers
.
id
:
_id
,
headers
.
patient_id
:
projection_image
.
PatientID
,
headers
.
age
:
parse_age
(
projection_image
.
PatientAge
),
headers
.
weight
:
float
(
projection_image
.
PatientWeight
),
headers
.
size
:
float
(
projection_image
.
PatientSize
),
headers
.
protocol
:
protocol
.
name
,
headers
.
datetime_acquisition
:
parse_series_time
(
projection_image
),
headers
.
datetime_reconstruction
:
datetimes
[
0
],
headers
.
pixel_spacing_x
:
pixel_spacing
[
0
],
headers
.
pixel_spacing_y
:
pixel_spacing
[
1
],
headers
.
pixel_spacing_z
:
pixel_spacing
[
2
],
headers
.
shape_x
:
shape
[
0
],
headers
.
shape_y
:
shape
[
1
],
headers
.
shape_z
:
shape
[
2
],
headers
.
radiopharmaceutical
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
].
Radiopharmaceutical
,
headers
.
radionuclide_dose
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
].
RadionuclideTotalDose
,
headers
.
radionuclide_code
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
]
.
RadionuclideCodeSequence
[
0
]
.
CodeValue
,
headers
.
radionuclide_meaning
:
projection_image
.
RadiopharmaceuticalInformationSequence
[
0
]
.
RadionuclideCodeSequence
[
0
]
.
CodeMeaning
,
headers
.
energy_window_peak_lower
:
energy_windows
[
0
][
0
],
headers
.
energy_window_peak_upper
:
energy_windows
[
0
][
1
],
headers
.
energy_window_scatter_lower
:
energy_windows
[
1
][
0
],
headers
.
energy_window_scatter_upper
:
energy_windows
[
1
][
1
],
headers
.
detector_count
:
len
(
projection_image
.
DetectorInformationSequence
),
headers
.
collimator_type
:
projection_image
.
DetectorInformationSequence
[
0
].
CollimatorType
,
headers
.
rotation_start
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
StartAngle
),
headers
.
rotation_step
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
AngularStep
),
headers
.
rotation_scan_arc
:
float
(
projection_image
.
RotationInformationSequence
[
0
].
ScanArc
),
headers
.
file_projection
:
_filename_projection
,
headers
.
file_recon_ac
:
_filename_recon_ac
,
headers
.
file_recon_no_ac
:
_filename_recon_no_ac
,
headers
.
file_mu_map
:
_filename_mu_map
,
}
_id
+=
1
row
=
pd
.
DataFrame
(
row
,
index
=
[
0
])
data
=
pd
.
concat
((
data
,
row
),
ignore_index
=
True
)
data
.
to_csv
(
args
.
meta_csv
,
index
=
False
)
except
Exception
as
e
:
logger
.
error
(
e
)
raise
e
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment