Skip to content
Snippets Groups Projects
Commit 934fcc7c authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

remove eval recon_ac script

parent cfb837ca
No related branches found
No related tags found
No related merge requests found
from mu_map.eval.measures import nmae, mse
if __name__ == "__main__":
import argparse
import json
import os
import numpy as np
import pandas as pd
import torch
from mu_map.data.prepare import headers
from mu_map.data.remove_bed import add_bed
from mu_map.dataset.default import MuMapDataset
from mu_map.dataset.util import load_dcm_img, align_images
from mu_map.dataset.transform import SequenceTransform, PadCropTranform
from mu_map.models.unet import UNet
from mu_map.training.random_search import normalization_by_params, scatter_correction_by_params
from mu_map.util import reconstruct
parser = argparse.ArgumentParser(
description="Compute, print and store measures for a given model based on the resulting reconstructions",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cpu", "cuda"],
help="the device on which the model is evaluated (cpu or cuda)",
)
parser.add_argument(
"--dir_train",
type=str,
required=True,
help="directory where training results (snapshots, params) are stored",
)
parser.add_argument("--out", type=str, help="write results as a csv file")
parser.add_argument(
"--dataset_dir",
type=str,
default="data/second/",
help="directory where the dataset is found",
)
parser.add_argument(
"--split",
type=str,
default="validation",
choices=["train", "test", "validation", "all"],
help="the split of the dataset to be processed",
)
args = parser.parse_args()
if args.split == "all":
args.split = None
torch.set_grad_enabled(False)
device = torch.device(args.device)
with open(os.path.join(args.dir_train, "params.json"), mode="r") as f:
params = json.load(f)
weights = os.path.join(args.dir_train, "snapshots", "val_min_generator.pth")
model = UNet()
model.load_state_dict(torch.load(weights, map_location=device))
model = model.to(device).eval()
transform_pad_crop = PadCropTranform(dim=3, size=32)
transform_normalization = SequenceTransform(
transforms=[
normalization_by_params(params),
transform_pad_crop,
]
)
dataset = MuMapDataset(
args.dataset_dir,
transform_normalization=transform_normalization,
split_name=args.split,
scatter_correction=scatter_correction_by_params(params),
)
dataset_with_bed = MuMapDataset(args.dataset_dir, transform_normalization=transform_pad_crop, split_name=args.split, bed_contours_file=None)
values = pd.DataFrame({
"NMAE_NAC_TO_AC": [],
"NMAE_SYN_TO_AC": [],
"NMAE_CT_TO_AC": [],
"NMAE_NAC_TO_CT": [],
"NMAE_SYN_TO_CT": [],
})
for i, ((recon, _), (recon_nac, mu_map_ct)) in enumerate(zip(dataset, dataset_with_bed)):
print(
f"Process input {str(i):>{len(str(len(dataset)))}}/{len(dataset)}", end="\r"
)
_row = dataset.table.iloc[i]
mu_map_syn = model(recon.unsqueeze(dim=0).to(device))
mu_map_syn = mu_map_syn.squeeze().cpu().numpy()
mu_map_ct = mu_map_ct.squeeze().cpu().numpy()
mu_map_syn = add_bed(mu_map_syn, mu_map_ct, bed_contour=dataset.bed_contours[_row["id"]])
recon_nac = recon_nac.squeeze().cpu().numpy()
recon_ac = load_dcm_img(os.path.join(dataset.dir_images, _row[headers.file_recon_ac_nsc]))
recon_ac = torch.from_numpy(recon_ac)
recon_ac, _ = transform_pad_crop(recon_ac, recon_ac)
recon_ac = recon_ac.cpu().numpy()
recon_ac_syn = reconstruct(recon_nac.copy(), mu_map=mu_map_syn.copy(), use_gpu=args.device=="cuda")
recon_ac_ct = reconstruct(recon_nac.copy(), mu_map=mu_map_ct.copy(), use_gpu=args.device=="cuda")
row = pd.DataFrame({
"NMAE_NAC_TO_AC": [nmae(recon_nac, recon_ac)],
"NMAE_SYN_TO_AC": [nmae(recon_ac_syn, recon_ac)],
"NMAE_CT_TO_AC": [nmae(recon_ac_ct, recon_ac)],
"NMAE_NAC_TO_CT": [nmae(recon_nac, recon_ac_ct)],
"NMAE_SYN_TO_CT": [nmae(recon_ac_syn, recon_ac_ct)],
})
values = pd.concat((values, row), ignore_index=True)
print(f" " * 100, end="\r")
if args.out:
values.to_csv(args.out, index=False)
print("Scores:")
for measure_name, measure_values in values.items():
mean = measure_values.mean()
std = np.std(measure_values)
print(f" - {measure_name:>20}: {mean:.6f}±{std:.6f}")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment