Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
934fcc7c
Commit
934fcc7c
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
remove eval recon_ac script
parent
cfb837ca
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/eval/recon_ac.py
+0
-131
0 additions, 131 deletions
mu_map/eval/recon_ac.py
with
0 additions
and
131 deletions
mu_map/eval/recon_ac.py
deleted
100644 → 0
+
0
−
131
View file @
cfb837ca
from
mu_map.eval.measures
import
nmae
,
mse
if
__name__
==
"
__main__
"
:
import
argparse
import
json
import
os
import
numpy
as
np
import
pandas
as
pd
import
torch
from
mu_map.data.prepare
import
headers
from
mu_map.data.remove_bed
import
add_bed
from
mu_map.dataset.default
import
MuMapDataset
from
mu_map.dataset.util
import
load_dcm_img
,
align_images
from
mu_map.dataset.transform
import
SequenceTransform
,
PadCropTranform
from
mu_map.models.unet
import
UNet
from
mu_map.training.random_search
import
normalization_by_params
,
scatter_correction_by_params
from
mu_map.util
import
reconstruct
parser
=
argparse
.
ArgumentParser
(
description
=
"
Compute, print and store measures for a given model based on the resulting reconstructions
"
,
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
)
parser
.
add_argument
(
"
--device
"
,
type
=
str
,
default
=
"
cuda
"
,
choices
=
[
"
cpu
"
,
"
cuda
"
],
help
=
"
the device on which the model is evaluated (cpu or cuda)
"
,
)
parser
.
add_argument
(
"
--dir_train
"
,
type
=
str
,
required
=
True
,
help
=
"
directory where training results (snapshots, params) are stored
"
,
)
parser
.
add_argument
(
"
--out
"
,
type
=
str
,
help
=
"
write results as a csv file
"
)
parser
.
add_argument
(
"
--dataset_dir
"
,
type
=
str
,
default
=
"
data/second/
"
,
help
=
"
directory where the dataset is found
"
,
)
parser
.
add_argument
(
"
--split
"
,
type
=
str
,
default
=
"
validation
"
,
choices
=
[
"
train
"
,
"
test
"
,
"
validation
"
,
"
all
"
],
help
=
"
the split of the dataset to be processed
"
,
)
args
=
parser
.
parse_args
()
if
args
.
split
==
"
all
"
:
args
.
split
=
None
torch
.
set_grad_enabled
(
False
)
device
=
torch
.
device
(
args
.
device
)
with
open
(
os
.
path
.
join
(
args
.
dir_train
,
"
params.json
"
),
mode
=
"
r
"
)
as
f
:
params
=
json
.
load
(
f
)
weights
=
os
.
path
.
join
(
args
.
dir_train
,
"
snapshots
"
,
"
val_min_generator.pth
"
)
model
=
UNet
()
model
.
load_state_dict
(
torch
.
load
(
weights
,
map_location
=
device
))
model
=
model
.
to
(
device
).
eval
()
transform_pad_crop
=
PadCropTranform
(
dim
=
3
,
size
=
32
)
transform_normalization
=
SequenceTransform
(
transforms
=
[
normalization_by_params
(
params
),
transform_pad_crop
,
]
)
dataset
=
MuMapDataset
(
args
.
dataset_dir
,
transform_normalization
=
transform_normalization
,
split_name
=
args
.
split
,
scatter_correction
=
scatter_correction_by_params
(
params
),
)
dataset_with_bed
=
MuMapDataset
(
args
.
dataset_dir
,
transform_normalization
=
transform_pad_crop
,
split_name
=
args
.
split
,
bed_contours_file
=
None
)
values
=
pd
.
DataFrame
({
"
NMAE_NAC_TO_AC
"
:
[],
"
NMAE_SYN_TO_AC
"
:
[],
"
NMAE_CT_TO_AC
"
:
[],
"
NMAE_NAC_TO_CT
"
:
[],
"
NMAE_SYN_TO_CT
"
:
[],
})
for
i
,
((
recon
,
_
),
(
recon_nac
,
mu_map_ct
))
in
enumerate
(
zip
(
dataset
,
dataset_with_bed
)):
print
(
f
"
Process input
{
str
(
i
)
:
>
{
len
(
str
(
len
(
dataset
)))
}}
/
{
len
(
dataset
)
}
"
,
end
=
"
\r
"
)
_row
=
dataset
.
table
.
iloc
[
i
]
mu_map_syn
=
model
(
recon
.
unsqueeze
(
dim
=
0
).
to
(
device
))
mu_map_syn
=
mu_map_syn
.
squeeze
().
cpu
().
numpy
()
mu_map_ct
=
mu_map_ct
.
squeeze
().
cpu
().
numpy
()
mu_map_syn
=
add_bed
(
mu_map_syn
,
mu_map_ct
,
bed_contour
=
dataset
.
bed_contours
[
_row
[
"
id
"
]])
recon_nac
=
recon_nac
.
squeeze
().
cpu
().
numpy
()
recon_ac
=
load_dcm_img
(
os
.
path
.
join
(
dataset
.
dir_images
,
_row
[
headers
.
file_recon_ac_nsc
]))
recon_ac
=
torch
.
from_numpy
(
recon_ac
)
recon_ac
,
_
=
transform_pad_crop
(
recon_ac
,
recon_ac
)
recon_ac
=
recon_ac
.
cpu
().
numpy
()
recon_ac_syn
=
reconstruct
(
recon_nac
.
copy
(),
mu_map
=
mu_map_syn
.
copy
(),
use_gpu
=
args
.
device
==
"
cuda
"
)
recon_ac_ct
=
reconstruct
(
recon_nac
.
copy
(),
mu_map
=
mu_map_ct
.
copy
(),
use_gpu
=
args
.
device
==
"
cuda
"
)
row
=
pd
.
DataFrame
({
"
NMAE_NAC_TO_AC
"
:
[
nmae
(
recon_nac
,
recon_ac
)],
"
NMAE_SYN_TO_AC
"
:
[
nmae
(
recon_ac_syn
,
recon_ac
)],
"
NMAE_CT_TO_AC
"
:
[
nmae
(
recon_ac_ct
,
recon_ac
)],
"
NMAE_NAC_TO_CT
"
:
[
nmae
(
recon_nac
,
recon_ac_ct
)],
"
NMAE_SYN_TO_CT
"
:
[
nmae
(
recon_ac_syn
,
recon_ac_ct
)],
})
values
=
pd
.
concat
((
values
,
row
),
ignore_index
=
True
)
print
(
f
"
"
*
100
,
end
=
"
\r
"
)
if
args
.
out
:
values
.
to_csv
(
args
.
out
,
index
=
False
)
print
(
"
Scores:
"
)
for
measure_name
,
measure_values
in
values
.
items
():
mean
=
measure_values
.
mean
()
std
=
np
.
std
(
measure_values
)
print
(
f
"
-
{
measure_name
:
>
20
}
:
{
mean
:
.
6
f
}
±
{
std
:
.
6
f
}
"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment