Skip to content
Snippets Groups Projects
Commit a800094d authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

add logging and descriptions to prepare

parent 657a6cf3
No related branches found
No related tags found
No related merge requests found
......@@ -2,12 +2,14 @@ import argparse
from datetime import datetime, timedelta
from enum import Enum
import os
from typing import List
from typing import List, Dict
import numpy as np
import pandas as pd
import pydicom
from mu_map.logging import add_logging_args, get_logger_by_args
class MyocardialProtocol(Enum):
Stress = 1
......@@ -47,7 +49,6 @@ headers.file_recon_no_ac = "file_recon_no_ac"
headers.file_mu_map = "file_mu_map"
def parse_series_time(dicom_image: pydicom.dataset.FileDataset) -> datetime:
"""
Parse the date and time of a DICOM series object into a datetime object.
......@@ -88,7 +89,9 @@ def parse_age(patient_age: str) -> int:
return int(_num)
def get_projection(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol) -> pydicom.dataset.FileDataset:
def get_projection(
dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol
) -> pydicom.dataset.FileDataset:
"""
Extract the SPECT projection from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
......@@ -96,17 +99,23 @@ def get_projection(dicom_images: List[pydicom.dataset.FileDataset], protocol: My
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
dicom_images = list(dicom_images)
_filter = filter(lambda image: "TOMO" in image.ImageType, dicom_images)
_filter = filter(lambda image: protocol.name in image.SeriesDescription, _filter)
dicom_images = list(_filter)
if len(dicom_images) != 1:
raise ValueError(f"No or multiple projections {len(dicom_images)} for protocol {protocol.name} available")
raise ValueError(
f"No or multiple projections {len(dicom_images)} for protocol {protocol.name} available"
)
return dicom_images[0]
def get_reconstruction(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol, corrected:bool=True) -> pydicom.dataset.FileDataset:
def get_reconstruction(
dicom_images: List[pydicom.dataset.FileDataset],
protocol: MyocardialProtocol,
corrected: bool = True,
) -> pydicom.dataset.FileDataset:
"""
Extract a SPECT reconstruction from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
The corrected flag can be used to either extract an attenuation corrected or a non-attenuation corrected image.
......@@ -117,38 +126,41 @@ def get_reconstruction(dicom_images: List[pydicom.dataset.FileDataset], protocol
:param corrected: extract an attenuation or non-attenuation corrected image
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
_filter = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
_filter = filter(
lambda image: protocol.name in image.SeriesDescription, dicom_images
)
if corrected:
dicom_images = filter(
_filter = filter(
lambda image: "AC" in image.SeriesDescription
and "NoAC" not in image.SeriesDescription,
dicom_images,
)
dicom_images = list(dicom_images)
else:
dicom_images = filter(
lambda image: "NoAC" in image.SeriesDescription, dicom_images
)
_filter = filter(lambda image: "NoAC" in image.SeriesDescription, dicom_images)
# for SPECT reconstructions created in clinical studies this value exists and is set to 'APEX_TO_BASE'
# for the reconstructions with attenuation maps it does not exist
dicom_images = filter(
_filter = filter(
lambda image: not hasattr(image, "SliceProgressionDirection"), dicom_images
)
dicom_images = list(dicom_images)
dicom_images = list(_filter)
dicom_images.sort(key=lambda image: parse_series_time(image), reverse=True)
if len(dicom_images) == 0:
_str = "AC" if corrected else "NoAC"
raise ValueError(f"{_str} Reconstruction for protocol {protocol.name} is not available")
raise ValueError(
f"{_str} Reconstruction for protocol {protocol.name} is not available"
)
return dicom_images[0]
def get_attenuation_map(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol) -> pydicom.dataset.FileDataset:
def get_attenuation_map(
dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol
) -> pydicom.dataset.FileDataset:
"""
Extract an attenuation map from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
If there are multiple attenuation maps, they are sorted by acquisition date and the newest is returned.
......@@ -157,14 +169,18 @@ def get_attenuation_map(dicom_images: List[pydicom.dataset.FileDataset], protoco
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
dicom_images = filter(lambda image: "µ-map" in image.SeriesDescription, dicom_images)
dicom_images = list(dicom_images)
_filter = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
_filter = filter(
lambda image: protocol.name in image.SeriesDescription, dicom_images
)
_filter = filter(lambda image: "µ-map" in image.SeriesDescription, dicom_images)
dicom_images = list(_filter)
dicom_images.sort(key=lambda image: parse_series_time(image), reverse=True)
if len(dicom_images) == 0:
raise ValueError(f"Attenuation map for protocol {protocol.name} is not available")
raise ValueError(
f"Attenuation map for protocol {protocol.name} is not available"
)
return dicom_images[0]
......@@ -180,13 +196,51 @@ if __name__ == "__main__":
nargs="+",
help="paths to DICOMDIR files or directories containing one of them",
)
parser.add_argument("--dataset_dir", type=str, required=True, help="")
parser.add_argument("--images_dir", type=str, default="images", help="")
parser.add_argument("--csv", type=str, default="data.csv", help="")
parser.add_argument("--prefix_projection", type=str, default="projection", help="")
parser.add_argument("--prefix_mu_map", type=str, default="mu_map", help="")
parser.add_argument("--prefix_recon_ac", type=str, default="recon_ac", help="")
parser.add_argument("--prefix_recon_no_ac", type=str, default="recon_no_ac", help="")
parser.add_argument(
"--dataset_dir",
type=str,
required=True,
help="directory where images, meta-information and the logs are stored",
)
parser.add_argument(
"--images_dir",
type=str,
default="images",
help="sub-directory of --dataset_dir where images are stored",
)
parser.add_argument(
"--meta_csv",
type=str,
default="meta.csv",
help="CSV file under --dataset_dir where meta-information is stored",
)
parser.add_argument(
"--prefix_projection",
type=str,
default="projection",
help="prefix used to store DICOM images of projections - format <id>-<protocol>-<prefix>.dcm",
)
parser.add_argument(
"--prefix_mu_map",
type=str,
default="mu_map",
help="prefix used to store DICOM images of attenuation maps - format <id>-<protocol>-<prefix>.dcm",
)
parser.add_argument(
"--prefix_recon_ac",
type=str,
default="recon_ac",
help="prefix used to store DICOM images of reconstructions with attenuation correction - format <id>-<protocol>-<prefix>.dcm",
)
parser.add_argument(
"--prefix_recon_no_ac",
type=str,
default="recon_no_ac",
help="prefix used to store DICOM images of reconstructions without attenuation correction - format <id>-<protocol>-<prefix>.dcm",
)
add_logging_args(
parser, defaults={"--logfile": "prepare.log", "--loglevel": "DEBUG"}
)
args = parser.parse_args()
args.dicom_dirs = [
......@@ -194,10 +248,20 @@ if __name__ == "__main__":
for _file in args.dicom_dirs
]
args.images_dir = os.path.join(args.dataset_dir, args.images_dir)
args.csv = os.path.join(args.dataset_dir, args.csv)
args.meta_csv = os.path.join(args.dataset_dir, args.meta_csv)
args.logfile = os.path.join(args.dataset_dir, args.logfile)
if not os.path.exists(args.dataset_dir):
os.mkdir(args.dataset_dir)
if not os.path.exists(args.images_dir):
os.mkdir(args.images_dir)
global logger
logger = get_logger_by_args(args)
patients = []
dicom_dir_by_patient = {}
dicom_dir_by_patient: Dict[str, str] = {}
for dicom_dir in args.dicom_dirs:
dataset = pydicom.dcmread(os.path.join(dicom_dir, "DICOMDIR"))
for patient in dataset.patient_records:
......@@ -207,22 +271,15 @@ if __name__ == "__main__":
dicom_dir_by_patient[patient.PatientID] = dicom_dir
patients.append(patient)
if not os.path.exists(args.dataset_dir):
os.mkdir(args.dataset_dir)
if not os.path.exists(args.images_dir):
os.mkdir(args.images_dir)
_id = 1
if os.path.exists(args.csv):
data = pd.read_csv(args.csv)
if os.path.exists(args.meta_csv):
data = pd.read_csv(args.meta_csv)
_id = int(data[headers.id].max())
else:
data = pd.DataFrame(dict([(key, []) for key in vars(headers).keys()]))
for i, patient in enumerate(patients, start=1):
print(f"Process patient {str(i):>3}/{len(patients)}:")
logger.debug(f"Process patient {str(i):>3}/{len(patients)}:")
# get all myocardial scintigraphy studies
studies = list(
......@@ -237,12 +294,15 @@ if __name__ == "__main__":
dicom_images = []
for study in studies:
series = list(
filter(lambda child: child.DirectoryRecordType == "SERIES", study.children)
filter(
lambda child: child.DirectoryRecordType == "SERIES", study.children
)
)
for _series in series:
images = list(
filter(
lambda child: child.DirectoryRecordType == "IMAGE", _series.children
lambda child: child.DirectoryRecordType == "IMAGE",
_series.children,
)
)
......@@ -254,7 +314,10 @@ if __name__ == "__main__":
images = list(
map(
lambda image: pydicom.dcmread(
os.path.join(dicom_dir_by_patient[patient.PatientID], *image.ReferencedFileID),
os.path.join(
dicom_dir_by_patient[patient.PatientID],
*image.ReferencedFileID,
),
stop_before_pixels=True,
),
images,
......@@ -266,19 +329,34 @@ if __name__ == "__main__":
dicom_images.append(images[0])
for protocol in MyocardialProtocol:
if len(data[(data[headers.patient_id] == patient.PatientID) & (data[headers.protocol] == protocol.name)]) > 0:
print(f"Skip {patient.PatientID}:{protocol.name} since it is already contained in the dataset")
if (
len(
data[
(data[headers.patient_id] == patient.PatientID)
& (data[headers.protocol] == protocol.name)
]
)
> 0
):
logger.info(
f"Skip {patient.PatientID}:{protocol.name} since it is already contained in the dataset"
)
continue
try:
projection_image = get_projection(dicom_images, protocol=protocol)
recon_ac = get_reconstruction(dicom_images, protocol=protocol, corrected=True)
recon_noac = get_reconstruction(dicom_images, protocol=protocol, corrected=False)
attenuation_map = get_attenuation_map(dicom_images, protocol=protocol)
recon_ac = get_reconstruction(
dicom_images, protocol=protocol, corrected=True
)
recon_noac = get_reconstruction(
dicom_images, protocol=protocol, corrected=False
)
attenuation_map = get_attenuation_map(
dicom_images, protocol=protocol
)
except ValueError as e:
print(f"Skip {patient.PatientID}:{protocol.name} because {e}")
logger.info(f"Skip {patient.PatientID}:{protocol.name} because {e}")
continue
recon_images = [recon_ac, recon_noac, attenuation_map]
......@@ -287,25 +365,30 @@ if __name__ == "__main__":
datetimes = list(map(parse_series_time, recon_images))
_datetimes = sorted(datetimes, reverse=True)
_datetimes_delta = list(map(lambda dt: _datetimes[0] - dt, _datetimes))
_equal = all(map(lambda dt: dt < timedelta(seconds=300), _datetimes_delta))
_equal = all(
map(lambda dt: dt < timedelta(seconds=300), _datetimes_delta)
)
assert (
_equal
), f"Not all dates and times of the reconstructions are equal: {datetimes}"
# extract pixel spacings and assert that they are equal for all reconstruction images
pixel_spacings = map(
lambda image: [*image.PixelSpacing, image.SliceThickness], recon_images
_map_lists = map(
lambda image: [*image.PixelSpacing, image.SliceThickness],
recon_images,
)
pixel_spacings = map(
lambda pixel_spacing: list(map(float, pixel_spacing)), pixel_spacings
_map_lists = map(
lambda pixel_spacing: list(map(float, pixel_spacing)), _map_lists
)
pixel_spacings = map(
lambda pixel_spacing: np.array(pixel_spacing), pixel_spacings
_map_ndarrays = map(
lambda pixel_spacing: np.array(pixel_spacing), _map_lists
)
pixel_spacings = list(pixel_spacings)
pixel_spacings = list(_map_ndarrays)
_equal = all(
map(
lambda pixel_spacing: (pixel_spacing == pixel_spacings[0]).all(),
lambda pixel_spacing: (
pixel_spacing == pixel_spacings[0]
).all(),
pixel_spacings,
)
)
......@@ -315,13 +398,13 @@ if __name__ == "__main__":
pixel_spacing = pixel_spacings[0]
# extract shapes and assert that they are equal for all reconstruction images
shapes = map(
_map_lists = map(
lambda image: [image.Rows, image.Columns, image.NumberOfSlices],
recon_images,
)
shapes = map(lambda shape: list(map(int, shape)), shapes)
shapes = map(lambda shape: np.array(shape), shapes)
shapes = list(shapes)
_map_lists = map(lambda shape: list(map(int, shape)), _map_lists)
_map_ndarrays = map(lambda shape: np.array(shape), _map_lists)
shapes = list(_map_ndarrays)
_equal = all(map(lambda shape: (shape == shapes[0]).all(), shapes))
# assert _equal, f"Not all shapes of the reconstructions are equal: {shapes}"
# print(shapes)
......@@ -348,10 +431,34 @@ if __name__ == "__main__":
recon_noac = pydicom.dcmread(recon_noac.filename)
attenuation_map = pydicom.dcmread(attenuation_map.filename)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_projection}.dcm"), projection_image)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_ac}.dcm"), recon_ac)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_no_ac}.dcm"), recon_noac)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_mu_map}.dcm"), attenuation_map)
pydicom.dcmwrite(
os.path.join(
args.images_dir,
f"{_id:04d}-{protocol.name.lower()}-{args.prefix_projection}.dcm",
),
projection_image,
)
pydicom.dcmwrite(
os.path.join(
args.images_dir,
f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_ac}.dcm",
),
recon_ac,
)
pydicom.dcmwrite(
os.path.join(
args.images_dir,
f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_no_ac}.dcm",
),
recon_noac,
)
pydicom.dcmwrite(
os.path.join(
args.images_dir,
f"{_id:04d}-{protocol.name.lower()}-{args.prefix_mu_map}.dcm",
),
attenuation_map,
)
row = {
headers.id: _id,
......@@ -388,7 +495,9 @@ if __name__ == "__main__":
headers.energy_window_peak_upper: energy_windows[0][1],
headers.energy_window_scatter_lower: energy_windows[1][0],
headers.energy_window_scatter_upper: energy_windows[1][1],
headers.detector_count: len(projection_image.DetectorInformationSequence),
headers.detector_count: len(
projection_image.DetectorInformationSequence
),
headers.collimator_type: projection_image.DetectorInformationSequence[
0
].CollimatorType,
......@@ -410,5 +519,4 @@ if __name__ == "__main__":
row = pd.DataFrame(row, index=[0])
data = pd.concat((data, row), ignore_index=True)
data.to_csv(args.csv, index=False)
data.to_csv(args.meta_csv, index=False)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment