Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
Looking for advice? Join the
Matrix channel for GitLab users in Bielefeld
!
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
aadd524d
Commit
aadd524d
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
first implementation of default training
parent
5ad12c55
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/training/default.py
+63
-10
63 additions, 10 deletions
mu_map/training/default.py
with
63 additions
and
10 deletions
mu_map/training/default.py
+
63
−
10
View file @
aadd524d
import
os
import
torch
class
Training
():
class
Training
():
def
__init__
(
self
,
epochs
):
def
__init__
(
self
,
model
,
data_loaders
,
epochs
,
logger
):
self
.
model
=
model
self
.
data_loaders
=
data_loaders
self
.
epochs
=
epochs
self
.
epochs
=
epochs
self
.
device
=
torch
.
device
(
"
cpu
"
)
self
.
snapshot_dir
=
"
tmp
"
self
.
snapshot_epoch
=
5
self
.
loss_func
=
torch
.
nn
.
MSELoss
()
# self.lr = 1e-3
# self.lr_decay_factor = 0.99
self
.
lr
=
0.1
self
.
lr_decay_factor
=
0.5
self
.
lr_decay_epoch
=
1
self
.
optimizer
=
torch
.
optim
.
Adam
(
self
.
model
.
parameters
(),
lr
=
self
.
lr
)
self
.
lr_scheduler
=
torch
.
optim
.
lr_scheduler
.
StepLR
(
self
.
optimizer
,
step_size
=
self
.
lr_decay_epoch
,
gamma
=
self
.
lr_decay_factor
)
self
.
logger
=
logger
def
run
(
self
):
def
run
(
self
):
for
epoch
in
range
(
1
,
self
.
epochs
+
1
):
for
epoch
in
range
(
1
,
self
.
epochs
+
1
):
self
.
run_epoch
(
self
.
data_loader
[
"
train
"
],
phase
=
"
train
"
)
logger
.
debug
(
f
"
Run epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
...
"
)
loss_training
=
self
.
run_epoch
(
self
.
data_loader
[
"
train
"
],
phase
=
"
eval
"
)
self
.
_run_epoch
(
self
.
data_loaders
[
"
train
"
],
phase
=
"
train
"
)
loss_validation
=
self
.
run_epoch
(
self
.
data_loader
[
"
validation
"
],
phase
=
"
eval
"
)
loss_training
=
self
.
_run_epoch
(
self
.
data_loaders
[
"
train
"
],
phase
=
"
eval
"
)
logger
.
info
(
f
"
Epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
- Loss TRAIN:
{
loss_training
:
.
4
f
}
"
)
loss_validation
=
self
.
_run_epoch
(
self
.
data_loaders
[
"
validation
"
],
phase
=
"
eval
"
)
logger
.
info
(
f
"
Epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
- Loss VAL:
{
loss_validation
:
.
4
f
}
"
)
# ToDo: log outputs and time
# ToDo: log outputs and time
_previous
=
self
.
lr_scheduler
.
get_last_lr
()[
0
]
self
.
lr_scheduler
.
step
()
self
.
lr_scheduler
.
step
()
logger
.
debug
(
f
"
Update learning rate from
{
_previous
:
.
4
f
}
to
{
self
.
lr_scheduler
.
get_last_lr
()[
0
]
:
.
4
f
}
"
)
if
epoch
%
self
.
snapshot_epoch
:
if
epoch
%
self
.
snapshot_epoch
:
self
.
store_snapshot
(
epoch
)
self
.
store_snapshot
(
epoch
)
logger
.
debug
(
f
"
Finished epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
+
1
}
"
)
def
run_epoch
(
self
,
data_loader
,
phase
):
def
_run_epoch
(
self
,
data_loader
,
phase
):
logger
.
debug
(
f
"
Run epoch in phase
{
phase
}
"
)
self
.
model
.
train
()
if
phase
==
"
train
"
else
self
.
model
.
eval
()
self
.
model
.
train
()
if
phase
==
"
train
"
else
self
.
model
.
eval
()
epoch_loss
=
0
epoch_loss
=
0
for
inputs
,
labels
in
self
.
data_loader
:
for
i
,
(
inputs
,
labels
)
in
enumerate
(
data_loader
):
print
(
f
"
Batch
{
str
(
i
)
:
>
{
len
(
str
(
len
(
data_loader
)))
}}
/
{
len
(
data_loader
)
}
"
,
end
=
"
\r
"
)
inputs
=
inputs
.
to
(
self
.
device
)
inputs
=
inputs
.
to
(
self
.
device
)
labels
=
labels
.
to
(
self
.
device
)
labels
=
labels
.
to
(
self
.
device
)
self
.
optimizer
.
zero_grad
()
self
.
optimizer
.
zero_grad
()
with
torch
.
set_grad_enabled
(
phase
==
"
train
"
):
with
torch
.
set_grad_enabled
(
phase
==
"
train
"
):
outputs
=
self
.
model
(
inputs
)
outputs
=
self
.
model
(
inputs
)
loss
=
self
.
loss
(
outputs
,
labels
)
loss
=
self
.
loss
_func
(
outputs
,
labels
)
if
phase
==
"
train
"
:
if
phase
==
"
train
"
:
loss
.
backward
()
loss
.
backward
()
optimizer
.
step
()
self
.
optimizer
.
step
()
epoch_loss
+=
loss
.
item
()
/
inputs
.
s
iz
e
[
0
]
epoch_loss
+=
loss
.
item
()
/
inputs
.
s
hap
e
[
0
]
return
epoch_loss
return
epoch_loss
def
store_snapshot
(
self
,
epoch
):
def
store_snapshot
(
self
,
epoch
):
pass
snapshot_file
=
f
"
{
epoch
:
0
{
len
(
str
(
self
.
epochs
))
}
d
}
.pth
"
snapshot_file
=
os
.
path
.
join
(
self
.
snapshot_dir
,
snapshot_file
)
logger
.
debug
(
f
"
Store snapshot at
{
snapshot_file
}
"
)
torch
.
save
(
self
.
model
.
state_dict
(),
snapshot_file
)
if
__name__
==
"
__main__
"
:
from
mu_map.data.mock
import
MuMapMockDataset
from
mu_map.logging
import
get_logger
from
mu_map.models.unet
import
UNet
logger
=
get_logger
(
logfile
=
"
train.log
"
,
loglevel
=
"
DEBUG
"
)
model
=
UNet
(
in_channels
=
1
,
features
=
[
8
,
16
])
print
(
model
)
dataset
=
MuMapMockDataset
()
data_loader_train
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
dataset
,
batch_size
=
2
,
shuffle
=
True
,
pin_memory
=
True
,
num_workers
=
1
)
data_loader_val
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
dataset
,
batch_size
=
2
,
shuffle
=
True
,
pin_memory
=
True
,
num_workers
=
1
)
data_loaders
=
{
"
train
"
:
data_loader_train
,
"
validation
"
:
data_loader_val
}
training
=
Training
(
model
,
data_loaders
,
10
,
logger
)
training
.
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment