Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
b7fad94b
Commit
b7fad94b
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
change parameters in random search
parent
730f3623
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/training/random_search.py
+33
-15
33 additions, 15 deletions
mu_map/training/random_search.py
with
33 additions
and
15 deletions
mu_map/training/random_search.py
+
33
−
15
View file @
b7fad94b
...
...
@@ -21,9 +21,9 @@ from mu_map.dataset.normalization import (
)
from
mu_map.dataset.transform
import
PadCropTranform
,
Transform
,
SequenceTransform
from
mu_map.eval.measures
import
nmae
,
mse
from
mu_map.models.discriminator
import
Discriminator
from
mu_map.models.discriminator
import
Discriminator
,
PatchDiscriminator
from
mu_map.models.unet
import
UNet
from
mu_map.training.cgan
2
import
cGANTraining
,
DiscriminatorParams
,
GeneratorParams
from
mu_map.training.cgan
import
cGANTraining
,
DiscriminatorParams
,
GeneratorParams
from
mu_map.training.loss
import
WeightedLoss
from
mu_map.logging
import
get_logger
...
...
@@ -216,7 +216,7 @@ class RandomSearch:
def
validate_and_make_directory
(
_dir
:
str
):
"""
Uility method to validate that a directory exists and is empty.
U
t
ility method to validate that a directory exists and is empty.
If is does not exist, it is created.
"""
if
not
os
.
path
.
exists
(
_dir
):
...
...
@@ -237,7 +237,7 @@ class RandomSearchCGAN(RandomSearch):
self
.
dataset_dir
=
"
data/second
"
self
.
iterations
=
iterations
self
.
device
=
torch
.
device
(
"
cuda
"
)
self
.
device
=
torch
.
device
(
"
cuda
"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"
cpu
"
)
self
.
n_slices
=
32
self
.
params
=
{}
...
...
@@ -256,10 +256,10 @@ class RandomSearchCGAN(RandomSearch):
)
self
.
training
:
cGANTraining
=
None
# dataset params
# dataset param
eter
s
self
.
param_sampler
[
"
patch_size
"
]
=
ChoiceSampler
([
32
,
64
])
self
.
param_sampler
[
"
patch_offset
"
]
=
ChoiceSampler
([
0
])
self
.
param_sampler
[
"
patch_number
"
]
=
IntIntervalSampler
(
min_val
=
50
,
max_val
=
2
00
)
self
.
param_sampler
[
"
patch_number
"
]
=
IntIntervalSampler
(
min_val
=
50
,
max_val
=
1
00
)
self
.
param_sampler
[
"
scatter_correction
"
]
=
ChoiceSampler
([
False
])
self
.
param_sampler
[
"
shuffle
"
]
=
ChoiceSampler
([
False
,
True
])
self
.
param_sampler
[
"
normalization
"
]
=
ChoiceSampler
(
...
...
@@ -267,10 +267,24 @@ class RandomSearchCGAN(RandomSearch):
)
self
.
param_sampler
[
"
pad_crop
"
]
=
ChoiceSampler
([
None
,
PadCropTranform
(
dim
=
3
,
size
=
self
.
n_slices
)])
# training params
self
.
param_sampler
[
"
epochs
"
]
=
IntIntervalSampler
(
min_val
=
50
,
max_val
=
200
)
self
.
param_sampler
[
"
batch_size
"
]
=
ChoiceSampler
([
64
])
self
.
param_sampler
[
"
lr
"
]
=
FloatIntervalSampler
(
0.01
,
0.0001
)
# model parameters
self
.
param_sampler
[
"
discriminator_type
"
]
=
ChoiceSampler
([
"
class
"
,
"
patch
"
])
def
discriminator_conv_features
(
discriminator_type
:
str
,
**
kwargs
):
if
discriminator_type
==
"
class
"
:
return
[[
32
,
64
,
128
],
[
64
,
128
,
256
],
[
32
,
64
,
128
,
256
]]
else
:
return
[[
32
,
64
,
128
,
256
],
[
64
,
128
,
256
,
512
]]
self
.
param_sampler
[
"
discriminator_conv_features
"
]
=
DependentChoiceSampler
(
discriminator_conv_features
)
self
.
param_sampler
[
"
generator_features
"
]
=
ChoiceSampler
([
[
128
,
256
,
512
],
[
64
,
128
,
256
,
512
],
[
32
,
64
,
128
,
256
,
512
],
])
# training parameters
self
.
param_sampler
[
"
epochs
"
]
=
ChoiceSampler
([
50
,
60
,
70
,
80
,
90
])
self
.
param_sampler
[
"
batch_size
"
]
=
ChoiceSampler
([
32
,
64
])
self
.
param_sampler
[
"
lr
"
]
=
FloatIntervalSampler
(
0.1
,
0.0001
)
self
.
param_sampler
[
"
lr_decay
"
]
=
ChoiceSampler
([
False
,
True
])
self
.
param_sampler
[
"
lr_decay_epoch
"
]
=
ChoiceSampler
([
1
])
self
.
param_sampler
[
"
lr_decay_factor
"
]
=
ChoiceSampler
([
0.99
])
...
...
@@ -379,10 +393,15 @@ class RandomSearchCGAN(RandomSearch):
)
self
.
logger
.
debug
(
f
"
Init discriminator ....
"
)
discriminator
=
Discriminator
(
in_channels
=
2
,
input_size
=
(
self
.
n_slices
,
self
.
params
[
"
patch_size
"
],
self
.
params
[
"
patch_size
"
])
)
input_size
=
(
2
,
self
.
n_slices
,
self
.
params
[
"
patch_size
"
],
self
.
params
[
"
patch_size
"
])
if
self
.
params
[
"
discriminator_type
"
]
==
"
class
"
:
discriminator
=
Discriminator
(
in_channels
=
2
,
input_size
=
input_size
,
conv_features
=
self
.
params
[
"
discriminator_conv_features
"
],
)
else
:
discriminator
=
PatchDiscriminator
(
in_channels
=
2
,
features
=
self
.
params
[
"
discriminator_conv_features
"
])
discriminator
=
discriminator
.
to
(
self
.
device
)
optimizer
=
torch
.
optim
.
Adam
(
discriminator
.
parameters
(),
lr
=
self
.
params
[
"
lr
"
],
betas
=
(
0.5
,
0.999
)
)
...
...
@@ -400,8 +419,7 @@ class RandomSearchCGAN(RandomSearch):
)
self
.
logger
.
debug
(
f
"
Init generator ....
"
)
features
=
[
64
,
128
,
256
,
512
]
generator
=
UNet
(
in_channels
=
1
,
features
=
features
)
generator
=
UNet
(
in_channels
=
1
,
features
=
self
.
params
[
"
generator_features
"
])
generator
=
generator
.
to
(
self
.
device
)
optimizer
=
torch
.
optim
.
Adam
(
generator
.
parameters
(),
lr
=
self
.
params
[
"
lr
"
],
betas
=
(
0.5
,
0.999
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment