Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
d66fd526
Commit
d66fd526
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
implement visualization of results in test script
parent
9beb28b1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/test.py
+134
-17
134 additions, 17 deletions
mu_map/test.py
with
134 additions
and
17 deletions
mu_map/test.py
+
134
−
17
View file @
d66fd526
import
cv2
as
cv
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
torch
from
.data.preprocessing
import
*
from
mu_map.dataset.default
import
MuMapDataset
from
mu_map.dataset.mock
import
MuMapMockDataset
from
mu_map.dataset.normalization
import
norm_max
from
mu_map.models.unet
import
UNet
from
mu_map.util
import
to_grayscale
,
COLOR_WHITE
means
=
torch
.
full
((
10
,
10
,
10
),
5.0
)
stds
=
torch
.
full
((
10
,
10
,
10
),
10.0
)
x
=
torch
.
normal
(
means
,
stds
)
torch
.
set_grad_enabled
(
False
)
print
(
f
"
Before: mean=
{
x
.
mean
()
:
.
3
f
}
std=
{
x
.
std
()
:
.
3
f
}
"
)
dataset
=
MuMapMockDataset
(
"
data/initial/
"
)
y
=
norm_gaussian
(
x
)
print
(
f
"
After: mean=
{
y
.
mean
()
:
.
3
f
}
std=
{
y
.
std
()
:
.
3
f
}
"
)
y
=
GaussianNorm
()(
x
)
print
(
f
"
After: mean=
{
y
.
mean
()
:
.
3
f
}
std=
{
y
.
std
()
:
.
3
f
}
"
)
model
=
UNet
(
in_channels
=
1
,
features
=
[
8
,
16
])
device
=
torch
.
device
(
"
cpu
"
)
weights
=
torch
.
load
(
"
tmp/10.pth
"
,
map_location
=
device
)
model
.
load_state_dict
(
weights
)
model
=
model
.
eval
()
recon
,
mu_map
=
dataset
[
0
]
recon
=
recon
.
unsqueeze
(
dim
=
0
)
recon
=
norm_max
(
recon
)
import
cv2
as
cv
import
numpy
as
np
output
=
model
(
recon
)
output
=
output
*
40206.0
diff
=
((
mu_map
-
output
)
**
2
).
mean
()
print
(
f
"
Diff:
{
diff
:
.
3
f
}
"
)
output
=
output
.
squeeze
().
numpy
()
mu_map
=
mu_map
.
squeeze
().
numpy
()
assert
output
.
shape
[
0
]
==
mu_map
.
shape
[
0
]
wname
=
"
Dataset
"
cv
.
namedWindow
(
wname
,
cv
.
WINDOW_NORMAL
)
cv
.
resizeWindow
(
wname
,
1600
,
900
)
space
=
np
.
full
((
1024
,
10
),
239
,
np
.
uint8
)
def
to_display_image
(
image
,
_slice
):
_image
=
to_grayscale
(
image
[
_slice
],
min_val
=
image
.
min
(),
max_val
=
image
.
max
())
_image
=
cv
.
resize
(
_image
,
(
1024
,
1024
),
cv
.
INTER_AREA
)
_text
=
f
"
{
str
(
_slice
)
:
>
{
len
(
str
(
image
.
shape
[
0
]))
}}
/
{
str
(
image
.
shape
[
0
])
}
"
_image
=
cv
.
putText
(
_image
,
_text
,
(
0
,
30
),
cv
.
FONT_HERSHEY_SIMPLEX
,
1
,
COLOR_WHITE
,
3
)
return
_image
def
com
(
image1
,
image2
,
_slice
):
image1
=
to_display_image
(
image1
,
_slice
)
image2
=
to_display_image
(
image2
,
_slice
)
space
=
np
.
full
((
image1
.
shape
[
0
],
10
),
239
,
np
.
uint8
)
return
np
.
hstack
((
image1
,
space
,
image2
))
i
=
0
while
True
:
x
=
com
(
output
,
mu_map
,
i
)
cv
.
imshow
(
wname
,
x
)
key
=
cv
.
waitKey
(
100
)
if
key
==
ord
(
"
q
"
):
break
i
=
(
i
+
1
)
%
output
.
shape
[
0
]
# dataset = MuMapDataset("data/initial")
# # print(" Recon || MuMap")
# # print(" Min | Max | Average || Min | Max | Average")
# r_max = []
# r_avg = []
# r_max_p = []
# r_avg_p = []
# r_avg_x = []
# m_max = []
# for recon, mu_map in dataset:
# r_max.append(recon.max())
# r_avg.append(recon.mean())
# recon_p = recon[:, :, 16:112, 16:112]
# r_max_p.append(recon_p.max())
# r_avg_p.append(recon_p.mean())
# r_avg_x.append(recon.sum() / (recon > 0.0).sum())
# # r_min = f"{recon.min():5.3f}"
# # r_max = f"{recon.max():5.3f}"
# # r_avg = f"{recon.mean():5.3f}"
# # m_min = f"{mu_map.min():5.3f}"
# # m_max = f"{mu_map.max():5.3f}"
# # m_avg = f"{mu_map.mean():5.3f}"
# # print(f"{r_min} | {r_max} | {r_avg} || {m_min} | {m_max} | {m_avg}")
# m_max.append(mu_map.max())
# # print(mu_map.max())
# r_max = np.array(r_max)
# r_avg = np.array(r_avg)
# r_max_p = np.array(r_max_p)
# r_avg_p = np.array(r_avg_p)
# r_avg_x = np.array(r_avg_x)
# m_max = np.array(m_max)
# fig, ax = plt.subplots()
# ax.scatter(r_max, m_max)
# # fig, axs = plt.subplots(4, 3, figsize=(16, 12))
# # axs[0, 0].hist(r_max)
# # axs[0, 0].set_title("Max")
# # axs[1, 0].hist(r_avg)
# # axs[1, 0].set_title("Mean")
# # axs[2, 0].hist(r_max / r_avg)
# # axs[2, 0].set_title("Max / Mean")
# # axs[3, 0].hist(recon.flatten())
# # axs[3, 0].set_title("Example Reconstruction")
# # axs[0, 1].hist(r_max_p)
# # axs[0, 1].set_title("Max")
# # axs[1, 1].hist(r_avg_p)
# # axs[1, 1].set_title("Mean")
# # axs[2, 1].hist(r_max_p / r_avg_p)
# # axs[2, 1].set_title("Max / Mean")
# # axs[3, 1].hist(recon_p.flatten())
# # axs[3, 1].set_title("Example Reconstruction")
x
=
np
.
zeros
((
512
,
512
),
np
.
uint8
)
cv
.
imshow
(
"
X
"
,
x
)
key
=
cv
.
waitKey
(
0
)
while
key
!=
ord
(
"
q
"
):
print
(
key
)
key
=
cv
.
waitKey
(
0
)
# # axs[0, 2].hist(r_max_p)
# # axs[0, 2].set_title("Max")
# # axs[1, 2].hist(r_avg_x)
# # axs[1, 2].set_title("Mean")
# # axs[2, 2].hist(r_max_p / r_avg_x)
# # axs[2, 2].set_title("Max / Mean")
# # axs[3, 2].hist(torch.masked_select(recon, (recon > 0.0)))
# # axs[3, 2].set_title("Example Reconstruction")
# plt.show()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment