Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import argparse
from datetime import datetime, timedelta
from enum import Enum
import os
from typing import List
import numpy as np
import pandas as pd
import pydicom
class MyocardialProtocol(Enum):
Stress = 1
Rest = 2
headers = argparse.Namespace()
headers.id = "id"
headers.patient_id = "patient_id"
headers.age = "age"
headers.weight = "weight"
headers.size = "size"
headers.protocol = "protocol"
headers.datetime_acquisition = "datetime_acquisition"
headers.datetime_reconstruction = "datetime_reconstruction"
headers.pixel_spacing_x = "pixel_spacing_x"
headers.pixel_spacing_y = "pixel_spacing_y"
headers.pixel_spacing_z = "pixel_spacing_z"
headers.shape_x = "shape_x"
headers.shape_y = "shape_y"
headers.shape_z = "shape_z"
headers.radiopharmaceutical = "radiopharmaceutical"
headers.radionuclide_dose = "radionuclide_dose"
headers.radionuclide_code = "radionuclide_code"
headers.radionuclide_meaning = "radionuclide_meaning"
headers.energy_window_peak_lower = "energy_window_peak_lower"
headers.energy_window_peak_upper = "energy_window_peak_upper"
headers.energy_window_scatter_lower = "energy_window_scatter_lower"
headers.energy_window_scatter_upper = "energy_window_scatter_upper"
headers.detector_count = "detector_count"
headers.collimator_type = "collimator_type"
headers.rotation_start = "rotation_start"
headers.rotation_step = "rotation_step"
headers.rotation_scan_arc = "rotation_scan_arc"
headers.file_recon_ac = "file_recon_ac"
headers.file_recon_no_ac = "file_recon_no_ac"
headers.file_mu_map = "file_mu_map"
def parse_series_time(dicom_image: pydicom.dataset.FileDataset) -> datetime:
"""
Parse the date and time of a DICOM series object into a datetime object.
:param dicom_image: the dicom file to parse the series date and time from
:return: an according python datetime object.
"""
_date = dicom_image.SeriesDate
_time = dicom_image.SeriesTime
return datetime(
year=int(_date[0:4]),
month=int(_date[4:6]),
day=int(_date[6:8]),
hour=int(_time[0:2]),
minute=int(_time[2:4]),
second=int(_time[4:6]),
microsecond=int(_time.split(".")[1]),
)
def parse_age(patient_age: str) -> int:
"""
Parse and age string as defined in the DICOM standard into an integer representing the age in years.
:param patient_age: age string as defined in the DICOM standard
:return: the age in years as a number
"""
assert (
type(patient_age) == str
), f"patient age needs to be a string and not {type(patient_age)}"
assert (
len(patient_age) == 4
), f"patient age [{patient_age}] has to be four characters long"
_num, _format = patient_age[:3], patient_age[3]
assert (
_format == "Y"
), f"currently, only patient ages in years [Y] is supported, not [{_format}]"
return int(_num)
def get_projection(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol) -> pydicom.dataset.FileDataset:
"""
Extract the SPECT projection from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
dicom_images = list(dicom_images)
if len(dicom_images) != 1:
raise ValueError(f"No or multiple projections {len(dicom_images)} for protocol {protocol.name} available")
return dicom_images[0]
def get_reconstruction(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol, corrected:bool=True) -> pydicom.dataset.FileDataset:
"""
Extract a SPECT reconstruction from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
The corrected flag can be used to either extract an attenuation corrected or a non-attenuation corrected image.
If there are multiple images, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:param corrected: extract an attenuation or non-attenuation corrected image
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
if corrected:
dicom_images = filter(
lambda image: "AC" in image.SeriesDescription
and "NoAC" not in image.SeriesDescription,
dicom_images,
)
dicom_images = list(dicom_images)
else:
dicom_images = filter(
lambda image: "NoAC" in image.SeriesDescription, dicom_images
)
# for SPECT reconstructions created in clinical studies this value exists and is set to 'APEX_TO_BASE'
# for the reconstructions with attenuation maps it does not exist
dicom_images = filter(
lambda image: not hasattr(image, "SliceProgressionDirection"), dicom_images
)
dicom_images = list(dicom_images)
dicom_images.sort(key=lambda image: parse_series_time(image), reverse=True)
if len(dicom_images) == 0:
_str = "AC" if corrected else "NoAC"
raise ValueError(f"{_str} Reconstruction for protocol {protocol.name} is not available")
return dicom_images[0]
def get_attenuation_map(dicom_images: List[pydicom.dataset.FileDataset], protocol: MyocardialProtocol) -> pydicom.dataset.FileDataset:
"""
Extract an attenuation map from a list of DICOM images belonging to a myocardial scintigraphy study given a study protocol.
If there are multiple attenuation maps, they are sorted by acquisition date and the newest is returned.
:param dicom_images: list of DICOM images of a study
:param protocol: the protocol for which the projection images should be extracted
:return: the extracted DICOM image
"""
dicom_images = filter(lambda image: "RECON TOMO" in image.ImageType, dicom_images)
dicom_images = filter(lambda image: protocol.name in image.SeriesDescription, dicom_images)
dicom_images = filter(lambda image: "µ-map" in image.SeriesDescription, dicom_images)
dicom_images = list(dicom_images)
dicom_images.sort(key=lambda image: parse_series_time(image), reverse=True)
if len(dicom_images) == 0:
raise ValueError(f"Attenuation map for protocol {protocol.name} is not available")
return dicom_images[0]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Prepare a dataset from DICOM directories",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"dicom_dirs",
type=str,
nargs="+",
help="paths to DICOMDIR files or directories containing one of them",
)
parser.add_argument("--dataset_dir", type=str, required=True, help="")
parser.add_argument("--images_dir", type=str, default="images", help="")
parser.add_argument("--csv", type=str, default="data.csv", help="")
parser.add_argument("--prefix_projection", type=str, default="projection", help="")
parser.add_argument("--prefix_mu_map", type=str, default="mu_map", help="")
parser.add_argument("--prefix_recon_ac", type=str, default="recon_ac", help="")
parser.add_argument("--prefix_recon_no_ac", type=str, default="recon_no_ac", help="")
args = parser.parse_args()
args.dicom_dirs = [
(os.path.dirname(_file) if os.path.isfile(_file) else _file)
for _file in args.dicom_dirs
]
args.images_dir = os.path.join(args.dataset_dir, args.images_dir)
args.csv = os.path.join(args.dataset_dir, args.csv)
patients = []
dicom_dir_by_patient = {}
for dicom_dir in args.dicom_dirs:
dataset = pydicom.dcmread(os.path.join(dicom_dir, "DICOMDIR"))
for patient in dataset.patient_records:
assert (
patient.PatientID not in dicom_dir_by_patient
), f"Patient {patient.PatientID} is contained twice in the given DICOM directories ({dicom_dir} and {dicom_dir_by_patient[patient.PatientID]})"
dicom_dir_by_patient[patient.PatientID] = dicom_dir
patients.append(patient)
if not os.path.exists(args.dataset_dir):
os.mkdir(args.dataset_dir)
if not os.path.exists(args.images_dir):
os.mkdir(args.images_dir)
_id = 1
if os.path.exists(args.csv):
data = pd.read_csv(args.csv)
_id = int(data[headers.id].max())
else:
data = pd.DataFrame(dict([(key, []) for key in vars(headers).keys()]))
for i, patient in enumerate(patients, start=1):
print(f"Process patient {str(i):>3}/{len(patients)}:")
# get all myocardial scintigraphy studies
studies = list(
filter(
lambda child: child.DirectoryRecordType == "STUDY"
and child.StudyDescription == "Myokardszintigraphie",
patient.children,
)
)
# extract all dicom images
dicom_images = []
for study in studies:
series = list(
filter(lambda child: child.DirectoryRecordType == "SERIES", study.children)
)
for _series in series:
images = list(
filter(
lambda child: child.DirectoryRecordType == "IMAGE", _series.children
)
)
# all SPECT data is stored as a single 3D array which means that it is a series with a single image
# this is not the case for CTs, which are skipped here
if len(images) != 1:
continue
images = list(
map(
lambda image: pydicom.dcmread(
os.path.join(dicom_dir_by_patient[patient.PatientID], *image.ReferencedFileID),
stop_before_pixels=True,
),
images,
)
)
if len(images) == 0:
continue
dicom_images.append(images[0])
for protocol in MyocardialProtocol:
if len(data[(data[headers.patient_id] == patient.PatientID) & (data[headers.protocol] == protocol.name)]) > 0:
print(f"Skip {patient.PatientID}:{protocol.name} since it is already contained in the dataset")
continue
try:
projection_image = get_projection(dicom_images, protocol=protocol)
recon_ac = get_reconstruction(dicom_images, protocol=protocol, corrected=True)
recon_noac = get_reconstruction(dicom_images, protocol=protocol, corrected=False)
attenuation_map = get_attenuation_map(dicom_images, protocol=protocol)
except ValueError as e:
print(f"Skip {patient.PatientID}:{protocol.name} because {e}")
continue
recon_images = [recon_ac, recon_noac, attenuation_map]
# extract date times and assert that they are equal for all reconstruction images
datetimes = list(map(parse_series_time, recon_images))
_datetimes = sorted(datetimes, reverse=True)
_datetimes_delta = list(map(lambda dt: _datetimes[0] - dt, _datetimes))
_equal = all(map(lambda dt: dt < timedelta(seconds=300), _datetimes_delta))
assert (
_equal
), f"Not all dates and times of the reconstructions are equal: {datetimes}"
# extract pixel spacings and assert that they are equal for all reconstruction images
pixel_spacings = map(
lambda image: [*image.PixelSpacing, image.SliceThickness], recon_images
)
pixel_spacings = map(
lambda pixel_spacing: list(map(float, pixel_spacing)), pixel_spacings
)
pixel_spacings = map(
lambda pixel_spacing: np.array(pixel_spacing), pixel_spacings
)
pixel_spacings = list(pixel_spacings)
_equal = all(
map(
lambda pixel_spacing: (pixel_spacing == pixel_spacings[0]).all(),
pixel_spacings,
)
)
assert (
_equal
), f"Not all pixel spacings of the reconstructions are equal: {pixel_spacings}"
pixel_spacing = pixel_spacings[0]
# extract shapes and assert that they are equal for all reconstruction images
shapes = map(
lambda image: [image.Rows, image.Columns, image.NumberOfSlices],
recon_images,
)
shapes = map(lambda shape: list(map(int, shape)), shapes)
shapes = map(lambda shape: np.array(shape), shapes)
shapes = list(shapes)
_equal = all(map(lambda shape: (shape == shapes[0]).all(), shapes))
# assert _equal, f"Not all shapes of the reconstructions are equal: {shapes}"
# print(shapes)
shape = shapes[0]
# exctract and sort energy windows
energy_windows = projection_image.EnergyWindowInformationSequence
energy_windows = map(
lambda ew: ew.EnergyWindowRangeSequence[0], energy_windows
)
energy_windows = map(
lambda ew: (
float(ew.EnergyWindowLowerLimit),
float(ew.EnergyWindowUpperLimit),
),
energy_windows,
)
energy_windows = list(energy_windows)
energy_windows.sort(key=lambda ew: ew[0], reverse=True)
# re-read images with pixel-level data and save accordingly
projection_image = pydicom.dcmread(projection_image.filename)
recon_ac = pydicom.dcmread(recon_ac.filename)
recon_noac = pydicom.dcmread(recon_noac.filename)
attenuation_map = pydicom.dcmread(attenuation_map.filename)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_projection}.dcm"), projection_image)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_ac}.dcm"), recon_ac)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_recon_no_ac}.dcm"), recon_noac)
pydicom.dcmwrite(os.path.join(args.images_dir, f"{_id:04d}-{protocol.name.lower()}-{args.prefix_mu_map}.dcm"), attenuation_map)
row = {
headers.id: _id,
headers.patient_id: projection_image.PatientID,
headers.age: parse_age(projection_image.PatientAge),
headers.weight: float(projection_image.PatientWeight),
headers.size: float(projection_image.PatientSize),
headers.protocol: protocol.name,
headers.datetime_acquisition: parse_series_time(projection_image),
headers.datetime_reconstruction: datetimes[0],
headers.pixel_spacing_x: pixel_spacing[0],
headers.pixel_spacing_y: pixel_spacing[1],
headers.pixel_spacing_z: pixel_spacing[2],
headers.shape_x: shape[0],
headers.shape_y: shape[1],
headers.shape_z: shape[2],
headers.radiopharmaceutical: projection_image.RadiopharmaceuticalInformationSequence[
0
].Radiopharmaceutical,
headers.radionuclide_dose: projection_image.RadiopharmaceuticalInformationSequence[
0
].RadionuclideTotalDose,
headers.radionuclide_code: projection_image.RadiopharmaceuticalInformationSequence[
0
]
.RadionuclideCodeSequence[0]
.CodeValue,
headers.radionuclide_meaning: projection_image.RadiopharmaceuticalInformationSequence[
0
]
.RadionuclideCodeSequence[0]
.CodeMeaning,
headers.energy_window_peak_lower: energy_windows[0][0],
headers.energy_window_peak_upper: energy_windows[0][1],
headers.energy_window_scatter_lower: energy_windows[1][0],
headers.energy_window_scatter_upper: energy_windows[1][1],
headers.detector_count: len(projection_image.DetectorInformationSequence),
headers.collimator_type: projection_image.DetectorInformationSequence[
0
].CollimatorType,
headers.rotation_start: float(
projection_image.RotationInformationSequence[0].StartAngle
),
headers.rotation_step: float(
projection_image.RotationInformationSequence[0].AngularStep
),
headers.rotation_scan_arc: float(
projection_image.RotationInformationSequence[0].ScanArc
),
headers.file_recon_ac: "filename_recon_ac.dcm",
headers.file_recon_no_ac: "filename_recon_no_ac.dcm",
headers.file_mu_map: "filanem_mu_map.dcm",
}
_id += 1
row = pd.DataFrame(row, index=[0])
data = pd.concat((data, row), ignore_index=True)
data.to_csv(args.csv, index=False)