Newer
Older
from logging import Logger
from typing import Optional
from mu_map.dataset.default import MuMapDataset
from mu_map.training.lib import TrainingParams, AbstractTraining
from mu_map.training.loss import WeightedLoss
# Establish convention for real and fake labels during training
LABEL_REAL = 1.0
LABEL_FAKE = 0.0
class DiscriminatorParams(TrainingParams):
"""
Wrap training parameters to always carry the name 'Discriminator'.
"""
def __init__(
self,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler],
):
super().__init__(
name="Discriminator",
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
class GeneratorParams(TrainingParams):
"""
Wrap training parameters to always carry the name 'Generator'.
"""
def __init__(
self,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler],
):
super().__init__(
name="Generator",
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
class cGANTraining(AbstractTraining):
"""
Implementation of a conditional generative adversarial network training.
To see all parameters, have a look at AbstractTraining.
Parameters
----------
params_generator: GeneratorParams
training parameters containing a model an according optimizer and optionally a learning rate scheduler for the generator
params_discriminator: DiscriminatorParams
training parameters containing a model an according optimizer and optionally a learning rate scheduler for the discriminator
loss_func_dist: WeightedLoss
distance loss function for the generator
weight_criterion_dist: float
weight of the distance loss when training the generator
weight_criterion_adv: float
weight of the adversarial loss when training the generator
def __init__(
self,
epochs: int,
dataset: MuMapDataset,
batch_size: int,
device: torch.device,
snapshot_dir: str,
snapshot_epoch: int,
params_generator: GeneratorParams,
params_discriminator: DiscriminatorParams,
loss_func_dist: WeightedLoss,
weight_criterion_dist: float,
weight_criterion_adv: float,
early_stopping: Optional[int] = None,
epochs=epochs,
dataset=dataset,
batch_size=batch_size,
device=device,
early_stopping=early_stopping,
snapshot_dir=snapshot_dir,
snapshot_epoch=snapshot_epoch,
logger=logger,
)
self.training_params.append(params_generator)
self.training_params.append(params_discriminator)
self.generator = params_generator.model
self.discriminator = params_discriminator.model
self.optim_g = params_generator.optimizer
self.optim_d = params_discriminator.optimizer
self.weight_criterion_dist = weight_criterion_dist
self.weight_criterion_adv = weight_criterion_adv
self.criterion_adv = torch.nn.MSELoss(reduction="mean")
self.criterion_dist = loss_func_dist
def _after_train_batch(self):
"""
Overwrite calling step on all optimizers as this needs to be done
separately for the generator and discriminator during the training of
a batch.
"""
pass
def _train_batch(self, recons: torch.Tensor, mu_maps: torch.Tensor) -> float:
mu_maps_real = mu_maps # rename real mu maps for clarification
# compute fake mu maps with generator
mu_maps_fake = self.generator(recons)
# prepare inputs for the discriminator
inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
inputs_d_real = torch.cat((recons, mu_maps_real), dim=1)
# prepare labels/targets for the discriminator
labels_fake = torch.full(
self.discriminator.get_output_shape(inputs_d_fake.shape),
LABEL_FAKE,
device=self.device,
)
labels_real = torch.full(
self.discriminator.get_output_shape(inputs_d_real.shape),
LABEL_REAL,
device=self.device,
)
# ======================= Discriminator =====================================
# compute discriminator loss for fake mu maps
# detach is called so that gradients are not computed for the generator
outputs_d_fake = self.discriminator(inputs_d_fake.detach())
loss_d_fake = self.criterion_adv(outputs_d_fake, labels_fake)
# compute discriminator loss for real mu maps
outputs_d_real = self.discriminator(inputs_d_real)
loss_d_real = self.criterion_adv(outputs_d_real, labels_real)
# update discriminator
loss_d = 0.5 * (loss_d_fake + loss_d_real)
loss_d.backward() # compute gradients
self.optim_d.step()
# ===========================================================================
# ======================= Generator =========================================
outputs_d_fake = self.discriminator(inputs_d_fake) # this time no detach
loss_g_adv = self.criterion_adv(outputs_d_fake, labels_real)
loss_g_dist = self.criterion_dist(mu_maps_fake, mu_maps_real)
loss_g = (
self.weight_criterion_adv * loss_g_adv
+ self.weight_criterion_dist * loss_g_dist
)
loss_g.backward()
self.optim_g.step()
# ===========================================================================
def _eval_batch(self, recons: torch.Tensor, mu_maps: torch.Tensor) -> float:
mu_maps_fake = self.generator(recons)
loss = torch.nn.functional.l1_loss(mu_maps_fake, mu_maps)
return loss.item()
if __name__ == "__main__":
import argparse
import random
import sys
import numpy as np
from mu_map.dataset.patches import MuMapPatchDataset
from mu_map.dataset.normalization import (
MeanNormTransform,
MaxNormTransform,
GaussianNormTransform,
)
from mu_map.dataset.transform import PadCropTranform, SequenceTransform
from mu_map.logging import add_logging_args, get_logger_by_args
from mu_map.models.unet import UNet
from mu_map.models.discriminator import Discriminator, PatchDiscriminator
parser = argparse.ArgumentParser(
description="Train a UNet model to predict μ-maps from reconstructed images",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Model Args
parser.add_argument(
"--features",
type=int,
nargs="+",
default=[64, 128, 256, 512],
help="number of features in the layers of the UNet structure",
)
# Dataset Args
parser.add_argument(
"--dataset_dir",
type=str,
help="the directory where the dataset for training is found",
)
parser.add_argument(
"--input_norm",
type=str,
choices=["none", "mean", "max", "gaussian"],
default="mean",
help="type of normalization applied to the reconstructions",
)
parser.add_argument(
"--patch_size",
type=int,
default=32,
help="the size of patches extracted for each reconstruction",
)
parser.add_argument(
"--patch_offset",
type=int,
default=20,
help="offset to ignore the border of the image",
)
parser.add_argument(
"--number_of_patches",
type=int,
help="number of patches extracted for each image",
)
parser.add_argument(
"--no_shuffle",
action="store_true",
help="do not shuffle patches in the dataset",
)
parser.add_argument(
action="store_true",
help="use the scatter corrected reconstructions in the dataset",
)
# Training Args
parser.add_argument(
"--seed",
type=int,
help="seed used for random number generation",
)
parser.add_argument(
"--batch_size",
type=int,
help="the batch size used for training",
)
parser.add_argument(
"--output_dir",
type=str,
default="train_data",
help="directory in which results (snapshots and logs) of this training are saved",
)
parser.add_argument(
"--epochs",
type=int,
default=100,
help="the number of epochs for which the model is trained",
)
parser.add_argument(
"--device",
type=str,
default="cuda:0" if torch.cuda.is_available() else "cpu",
help="the device (cpu or gpu) with which the training is performed",
)
parser.add_argument(
"--early_stopping",
type=int,
help="define early stopping as the least amount of epochs in which the validation loss must improve",
)
"--dist_loss_func",
type=str,
default="l1",
help="define the loss function used as the distance loss of the generator , e.g. 0.75*l2+0.25*gdl",
"--dist_loss_weight",
default=100.0,
help="weight for the distance loss of the generator",
)
parser.add_argument(
"--adv_loss_weight",
type=float,
help="weight for the Adversarial-Loss of the generator",
)
parser.add_argument(
"--lr", type=float, default=0.001, help="the initial learning rate for training"
)
parser.add_argument(
"--decay_lr",
action="store_true",
help="decay the learning rate",
)
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
parser.add_argument(
"--lr_decay_factor",
type=float,
default=0.99,
help="decay factor for the learning rate",
)
parser.add_argument(
"--lr_decay_epoch",
type=int,
default=1,
help="frequency in epochs at which the learning rate is decayed",
)
parser.add_argument(
"--snapshot_dir",
type=str,
default="snapshots",
help="directory under --output_dir where snapshots are stored",
)
parser.add_argument(
"--snapshot_epoch",
type=int,
default=10,
help="frequency in epochs at which snapshots are stored",
)
# Logging Args
add_logging_args(parser, defaults={"--logfile": "train.log"})
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir)
if not os.path.exists(args.snapshot_dir):
os.mkdir(args.snapshot_dir)
else:
if len(os.listdir(args.snapshot_dir)) > 0:
print(
f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!"
)
print(f" Exit so that data is not accidentally overwritten!")
exit(1)
args.logfile = os.path.join(args.output_dir, args.logfile)
logger = get_logger_by_args(args)
logger.info(args)
args.seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
logger.info(f"Seed: {args.seed}")
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
transform_normalization = None
if args.input_norm == "mean":
transform_normalization = MeanNormTransform()
elif args.input_norm == "max":
transform_normalization = MaxNormTransform()
elif args.input_norm == "gaussian":
transform_normalization = GaussianNormTransform()
transform_normalization = SequenceTransform(
[transform_normalization, PadCropTranform(dim=3, size=32)]
)
dataset = MuMapPatchDataset(
args.dataset_dir,
patches_per_image=args.number_of_patches,
patch_size=args.patch_size,
patch_offset=args.patch_offset,
shuffle=not args.no_shuffle,
transform_normalization=transform_normalization,
scatter_correction=args.scatter_correction,
logger=logger,
)
discriminator = Discriminator(in_channels=2, input_size=args.patch_size)
# discriminator = PatchDiscriminator(in_channels=2)
discriminator = discriminator.to(device)
optimizer = torch.optim.Adam(
discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999)
)
lr_scheduler = (
torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_decay_epoch, gamma=args.lr_decay_factor
)
if args.decay_lr
else None
)
model=discriminator, optimizer=optimizer, lr_scheduler=lr_scheduler
)
generator = UNet(in_channels=1, features=args.features)
generator = generator.to(device)
optimizer = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(0.5, 0.999))
lr_scheduler = (
torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.lr_decay_factor, gamma=args.lr_decay_factor
)
if args.decay_lr
else None
)
model=generator, optimizer=optimizer, lr_scheduler=lr_scheduler
)
dist_criterion = WeightedLoss.from_str(args.dist_loss_func)
logger.debug(f"Use distance criterion: {dist_criterion}")
training = cGANTraining(
epochs=args.epochs,
dataset=dataset,
batch_size=args.batch_size,
early_stopping=args.early_stopping,
snapshot_dir=args.snapshot_dir,
snapshot_epoch=args.snapshot_epoch,
params_generator=params_g,
params_discriminator=params_d,
loss_func_dist=dist_criterion,
weight_criterion_dist=args.dist_loss_weight,
weight_criterion_adv=args.adv_loss_weight,