Skip to content
Snippets Groups Projects
cgan.py 15.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • import os
    from typing import Dict
    
    import torch
    from torch import Tensor
    
    from mu_map.training.loss import GradientDifferenceLoss
    from mu_map.logging import get_logger
    
    # Establish convention for real and fake labels during training
    LABEL_REAL = 1.0
    LABEL_FAKE = 0.0
    
    
    
    Tamino Huxohl's avatar
    Tamino Huxohl committed
    # class GeneratorLoss(torch.nn.Module):
        # def __init__(
            # self,
            # # l2_weight: float = 1.0,
            # # gdl_weight: float = 1.0,
            # # adv_weight: float = 20.0,
            # # logger=None,
        # ):
            # super().__init__()
    
            # # self.l2 = torch.nn.MSELoss(reduction="mean")
            # self.l2 = torch.nn.L1Loss(reduction="mean")
            # self.l2_weight = l2_weight
    
            # self.gdl = GradientDifferenceLoss()
            # self.gdl_weight = gdl_weight
    
            # self.adv = torch.nn.MSELoss(reduction="mean")
            # self.adv_weight = adv_weight
    
            # if logger:
                # logger.debug(f"GeneratorLoss: {self}")
    
        # def __repr__(self):
            # return f"{self.l2_weight:.3f} * MSELoss + {self.gdl_weight:.3f} * GDLLoss + {self.adv_weight:.3f} * AdversarialLoss"
    
        # def forward(
            # self,
            # mu_maps_real: Tensor,
            # outputs_g: Tensor,
            # targets_d: Tensor,
            # outputs_d: Tensor,
        # ):
            # loss_l2 = self.l2(outputs_g, mu_maps_real)
            # loss_gdl = self.gdl(outputs_g, mu_maps_real)
            # loss_adv = self.adv(outputs_d, targets_d)
    
            # return (
                # self.l2_weight * loss_l2
                # + self.gdl_weight * loss_gdl
                # + self.adv_weight * loss_adv
            # )
    
    
    
    class cGANTraining:
        def __init__(
            self,
            generator: torch.nn.Module,
            discriminator: torch.nn.Module,
            data_loaders: Dict[str, torch.utils.data.DataLoader],
            epochs: int,
            device: torch.device,
            lr_d: float,
            lr_decay_factor_d: float,
            lr_decay_epoch_d: int,
            lr_g: float,
            lr_decay_factor_g: float,
            lr_decay_epoch_g: int,
            l2_weight: float,
            gdl_weight: float,
            adv_weight: float,
            snapshot_dir: str,
            snapshot_epoch: int,
            logger=None,
        ):
            self.generator = generator
            self.discriminator = discriminator
    
            self.data_loaders = data_loaders
            self.epochs = epochs
            self.device = device
    
            self.snapshot_dir = snapshot_dir
            self.snapshot_epoch = snapshot_epoch
    
            self.logger = logger if logger is not None else get_logger()
    
    
            self.optimizer_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.999))
            self.optimizer_g = torch.optim.Adam(self.generator.parameters(), lr=lr_g, betas=(0.5, 0.999))
    
            # self.lr_scheduler_d = torch.optim.lr_scheduler.StepLR(
                # self.optimizer_d,
                # step_size=lr_decay_epoch_d,
                # gamma=lr_decay_factor_d,
            # )
            # self.lr_scheduler_g = torch.optim.lr_scheduler.StepLR(
                # self.optimizer_g,
                # step_size=lr_decay_epoch_g,
                # gamma=lr_decay_factor_g,
            # )
    
    
            self.criterion_d = torch.nn.MSELoss(reduction="mean")
    
    Tamino Huxohl's avatar
    Tamino Huxohl committed
            # self.criterion_g = GeneratorLoss(
                # l2_weight=l2_weight,
                # gdl_weight=gdl_weight,
                # adv_weight=adv_weight,
                # logger=self.logger,
            # )
    
            self.criterion_l1 = torch.nn.L1Loss(reduction="mean")
    
    
        def run(self):
            losses_d = []
            losses_g = []
            for epoch in range(1, self.epochs + 1):
                logger.debug(
                    f"Run epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs} ..."
                )
                _losses_d, _losses_g = self._train_epoch()
                losses_d.extend(_losses_d)
                losses_g.extend(_losses_g)
    
                self._eval_epoch(epoch, "train")
                self._eval_epoch(epoch, "validation")
    
    
                # self.lr_scheduler_d.step()
                # self.lr_scheduler_g.step()
    
    
                if epoch % self.snapshot_epoch == 0:
                    self.store_snapshot(epoch)
    
                logger.debug(
                    f"Finished epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs}"
                )
            return losses_d, losses_g
    
        def _train_epoch(self):
            logger.debug(f"Train epoch")
            torch.set_grad_enabled(True)
    
            self.discriminator = self.discriminator.train()
            self.generator = self.generator.train()
    
            losses_d = []
            losses_g = []
    
            data_loader = self.data_loaders["train"]
            for i, (recons, mu_maps) in enumerate(data_loader):
                print(
                    f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
                    end="\r",
                )
                recons = recons.to(self.device)
                mu_maps = mu_maps.to(self.device)
    
                loss_d_real, loss_d_fake, loss_g = self._step(recons, mu_maps)
    
                losses_d.append(loss_d_real + loss_d_fake)
                losses_g.append(loss_g)
            return losses_d, losses_g
    
        def _step(self, recons, mu_maps_real):
            batch_size = recons.shape[0]
    
            with torch.set_grad_enabled(True):
    
                self.optimizer_d.zero_grad()
                self.optimizer_g.zero_grad()
    
    
                # compute fake mu maps with generator
                mu_maps_fake = self.generator(recons)
    
    
                # compute discriminator loss for fake mu maps
                inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
                outputs_d_fake = self.discriminator(inputs_d_fake.detach())  # note the detach, so that gradients are not computed for the generator
    
                labels_fake = torch.full((outputs_d_fake.shape), LABEL_FAKE, device=self.device)
    
                loss_d_fake = self.criterion_d(outputs_d_fake, labels_fake)
    
                # compute discriminator loss for real mu maps
    
    Tamino Huxohl's avatar
    Tamino Huxohl committed
                inputs_d_real = torch.cat((recons, mu_maps_real), dim=1)
    
                outputs_d_real = self.discriminator(inputs_d_real)  # note the detach, so that gradients are not computed for the generator
    
                labels_real = torch.full((outputs_d_fake.shape), LABEL_REAL, device=self.device)
    
                loss_d_real = self.criterion_d(outputs_d_real, labels_real)
    
                # update discriminator
                loss_d = 0.5 * (loss_d_fake + loss_d_real)
                loss_d.backward()  # compute gradients
                self.optimizer_d.step()
    
    
                # update generator
    
                inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
                outputs_d_fake = self.discriminator(inputs_d_fake)
                loss_g_adv = self.criterion_d(outputs_d_fake, labels_real)
                loss_g_l1 = self.criterion_l1(mu_maps_fake, mu_maps_real)
                loss_g = loss_g_adv + 100.0 * loss_g_l1
    
                loss_g.backward()
                self.optimizer_g.step()
    
            return loss_d_real.item(), loss_d_fake.item(), loss_g.item()
    
        def _eval_epoch(self, epoch, split_name):
            logger.debug(f"Evaluate epoch on split {split_name}")
            torch.set_grad_enabled(False)
    
            self.discriminator = self.discriminator.eval()
            self.generator = self.generator.eval()
    
            loss = 0.0
            updates = 0
    
            data_loader = self.data_loaders[split_name]
            for i, (recons, mu_maps) in enumerate(data_loader):
                print(
                    f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
                    end="\r",
                )
                recons = recons.to(self.device)
                mu_maps = mu_maps.to(self.device)
    
                outputs = self.generator(recons)
    
                loss += torch.nn.functional.l1_loss(outputs, mu_maps)
                updates += 1
            loss = loss / updates
            logger.info(
                f"Epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs} - Loss {split_name}: {loss:.6f}"
            )
    
        def store_snapshot(self, epoch):
            snapshot_file_d = f"{epoch:0{len(str(self.epochs))}d}_discriminator.pth"
            snapshot_file_d = os.path.join(self.snapshot_dir, snapshot_file_d)
    
            snapshot_file_g = f"{epoch:0{len(str(self.epochs))}d}_generator.pth"
            snapshot_file_g = os.path.join(self.snapshot_dir, snapshot_file_g)
            logger.debug(f"Store snapshots at {snapshot_file_d} and {snapshot_file_g}")
            torch.save(self.discriminator.state_dict(), snapshot_file_d)
            torch.save(self.generator.state_dict(), snapshot_file_g)
    
    
    if __name__ == "__main__":
        import argparse
        import random
        import sys
    
        import numpy as np
    
        from mu_map.dataset.patches import MuMapPatchDataset
        from mu_map.dataset.normalization import (
            MeanNormTransform,
            MaxNormTransform,
            GaussianNormTransform,
        )
        from mu_map.dataset.transform import ScaleTransform
        from mu_map.logging import add_logging_args, get_logger_by_args
        from mu_map.models.unet import UNet
    
        from mu_map.models.discriminator import Discriminator, PatchDiscriminator
    
    
        parser = argparse.ArgumentParser(
            description="Train a UNet model to predict μ-maps from reconstructed scatter images",
            formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        )
    
        # Model Args
        parser.add_argument(
            "--features",
            type=int,
            nargs="+",
            default=[64, 128, 256, 512],
            help="number of features in the layers of the UNet structure",
        )
    
        # Dataset Args
        parser.add_argument(
            "--dataset_dir",
            type=str,
            default="data/initial/",
            help="the directory where the dataset for training is found",
        )
        parser.add_argument(
            "--input_norm",
            type=str,
            choices=["none", "mean", "max", "gaussian"],
            default="mean",
            help="type of normalization applied to the reconstructions",
        )
        parser.add_argument(
            "--patch_size",
            type=int,
            default=32,
            help="the size of patches extracted for each reconstruction",
        )
        parser.add_argument(
            "--patch_offset",
            type=int,
            default=20,
            help="offset to ignore the border of the image",
        )
        parser.add_argument(
            "--number_of_patches",
            type=int,
    
            help="number of patches extracted for each image",
        )
        parser.add_argument(
            "--no_shuffle",
            action="store_true",
            help="do not shuffle patches in the dataset",
        )
    
        # Training Args
        parser.add_argument(
            "--seed",
            type=int,
            help="seed used for random number generation",
        )
        parser.add_argument(
            "--batch_size",
            type=int,
    
            help="the batch size used for training",
        )
        parser.add_argument(
            "--output_dir",
            type=str,
            default="train_data",
            help="directory in which results (snapshots and logs) of this training are saved",
        )
        parser.add_argument(
            "--epochs",
            type=int,
            default=100,
            help="the number of epochs for which the model is trained",
        )
        parser.add_argument(
            "--device",
            type=str,
            default="cuda:0" if torch.cuda.is_available() else "cpu",
            help="the device (cpu or gpu) with which the training is performed",
        )
    
        parser.add_argument(
            "--mse_loss_weight",
            type=float,
            default=1.0,
            help="weight for the L2-Loss of the generator",
        )
        parser.add_argument(
            "--gdl_loss_weight",
            type=float,
            default=1.0,
            help="weight for the Gradient-Difference-Loss of the generator",
        )
        parser.add_argument(
            "--adv_loss_weight",
            type=float,
            default=20.0,
            help="weight for the Adversarial-Loss of the generator",
        )
    
        parser.add_argument(
            "--lr", type=float, default=0.001, help="the initial learning rate for training"
        )
        parser.add_argument(
            "--lr_decay_factor",
            type=float,
            default=0.99,
            help="decay factor for the learning rate",
        )
        parser.add_argument(
            "--lr_decay_epoch",
            type=int,
            default=1,
            help="frequency in epochs at which the learning rate is decayed",
        )
        parser.add_argument(
            "--snapshot_dir",
            type=str,
            default="snapshots",
            help="directory under --output_dir where snapshots are stored",
        )
        parser.add_argument(
            "--snapshot_epoch",
            type=int,
            default=10,
            help="frequency in epochs at which snapshots are stored",
        )
    
        parser.add_argument(
            "--generator_weights",
            type=str,
            help="use pre-trained weights for the generator",
        )
    
    
        # Logging Args
        add_logging_args(parser, defaults={"--logfile": "train.log"})
    
        args = parser.parse_args()
    
        if not os.path.exists(args.output_dir):
            os.mkdir(args.output_dir)
    
        args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir)
        if not os.path.exists(args.snapshot_dir):
            os.mkdir(args.snapshot_dir)
        else:
            if len(os.listdir(args.snapshot_dir)) > 0:
                print(
                    f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!"
                )
                print(f"           Exit so that data is not accidentally overwritten!")
                exit(1)
    
        args.logfile = os.path.join(args.output_dir, args.logfile)
    
        device = torch.device(args.device)
        logger = get_logger_by_args(args)
        logger.info(args)
    
    
        args.seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
    
        logger.info(f"Seed: {args.seed}")
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        np.random.seed(args.seed)
    
    
        # discriminator = Discriminator(in_channels=2, input_size=args.patch_size)
        discriminator = PatchDiscriminator(in_channels=2, input_size=args.patch_size)
    
        discriminator = discriminator.to(device)
    
        generator = UNet(in_channels=1, features=args.features)
        generator = generator.to(device)
    
        if args.generator_weights:
            logger.debug(f"Load generator weights from {args.generator_weights}")
            generator.load_state_dict(torch.load(args.generator_weights, map_location=device))
    
    
        transform_normalization = None
        if args.input_norm == "mean":
            transform_normalization = MeanNormTransform()
        elif args.input_norm == "max":
            transform_normalization = MaxNormTransform()
        elif args.input_norm == "gaussian":
            transform_normalization = GaussianNormTransform()
    
        data_loaders = {}
        for split in ["train", "validation"]:
            dataset = MuMapPatchDataset(
                args.dataset_dir,
                patches_per_image=args.number_of_patches,
                patch_size=args.patch_size,
                patch_offset=args.patch_offset,
                shuffle=not args.no_shuffle,
                split_name=split,
                transform_normalization=transform_normalization,
                logger=logger,
            )
            data_loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=args.batch_size,
                shuffle=True,
                pin_memory=True,
                num_workers=1,
            )
            data_loaders[split] = data_loader
    
        training = cGANTraining(
            discriminator=discriminator,
            generator=generator,
            data_loaders=data_loaders,
            epochs=args.epochs,
            device=device,
    
            lr_decay_factor_d=0.99,
            lr_decay_epoch_d=1,
    
            lr_decay_factor_g=0.99,
            lr_decay_epoch_g=1,
    
            l2_weight=args.mse_loss_weight,
            gdl_weight=args.gdl_loss_weight,
            adv_weight=args.adv_loss_weight,
    
            snapshot_dir=args.snapshot_dir,
            snapshot_epoch=args.snapshot_epoch,
            logger=logger,
        )
        losses_d, losses_g = training.run()
    
        import matplotlib.pyplot as plt
    
        fig, axs = plt.subplots(1, 2, figsize=(10, 5))
        axs[0].plot(losses_d)
        axs[0].set_title("Discriminator Loss")
        axs[0].set_xlabel("Iteration")
        axs[0].set_ylabel("Loss")
        axs[1].plot(losses_g, label="Generator")
        axs[1].set_title("Generator Loss")
        axs[1].set_xlabel("Iteration")
        axs[1].set_ylabel("Loss")
        plt.savefig("losses.png")