Newer
Older
import os
from typing import Dict
import torch
from torch import Tensor
from mu_map.training.loss import GradientDifferenceLoss
from mu_map.logging import get_logger
# Establish convention for real and fake labels during training
LABEL_REAL = 1.0
LABEL_FAKE = 0.0
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# class GeneratorLoss(torch.nn.Module):
# def __init__(
# self,
# # l2_weight: float = 1.0,
# # gdl_weight: float = 1.0,
# # adv_weight: float = 20.0,
# # logger=None,
# ):
# super().__init__()
# # self.l2 = torch.nn.MSELoss(reduction="mean")
# self.l2 = torch.nn.L1Loss(reduction="mean")
# self.l2_weight = l2_weight
# self.gdl = GradientDifferenceLoss()
# self.gdl_weight = gdl_weight
# self.adv = torch.nn.MSELoss(reduction="mean")
# self.adv_weight = adv_weight
# if logger:
# logger.debug(f"GeneratorLoss: {self}")
# def __repr__(self):
# return f"{self.l2_weight:.3f} * MSELoss + {self.gdl_weight:.3f} * GDLLoss + {self.adv_weight:.3f} * AdversarialLoss"
# def forward(
# self,
# mu_maps_real: Tensor,
# outputs_g: Tensor,
# targets_d: Tensor,
# outputs_d: Tensor,
# ):
# loss_l2 = self.l2(outputs_g, mu_maps_real)
# loss_gdl = self.gdl(outputs_g, mu_maps_real)
# loss_adv = self.adv(outputs_d, targets_d)
# return (
# self.l2_weight * loss_l2
# + self.gdl_weight * loss_gdl
# + self.adv_weight * loss_adv
# )
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class cGANTraining:
def __init__(
self,
generator: torch.nn.Module,
discriminator: torch.nn.Module,
data_loaders: Dict[str, torch.utils.data.DataLoader],
epochs: int,
device: torch.device,
lr_d: float,
lr_decay_factor_d: float,
lr_decay_epoch_d: int,
lr_g: float,
lr_decay_factor_g: float,
lr_decay_epoch_g: int,
l2_weight: float,
gdl_weight: float,
adv_weight: float,
snapshot_dir: str,
snapshot_epoch: int,
logger=None,
):
self.generator = generator
self.discriminator = discriminator
self.data_loaders = data_loaders
self.epochs = epochs
self.device = device
self.snapshot_dir = snapshot_dir
self.snapshot_epoch = snapshot_epoch
self.logger = logger if logger is not None else get_logger()
self.optimizer_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.999))
self.optimizer_g = torch.optim.Adam(self.generator.parameters(), lr=lr_g, betas=(0.5, 0.999))
# self.lr_scheduler_d = torch.optim.lr_scheduler.StepLR(
# self.optimizer_d,
# step_size=lr_decay_epoch_d,
# gamma=lr_decay_factor_d,
# )
# self.lr_scheduler_g = torch.optim.lr_scheduler.StepLR(
# self.optimizer_g,
# step_size=lr_decay_epoch_g,
# gamma=lr_decay_factor_g,
# )
self.criterion_d = torch.nn.MSELoss(reduction="mean")
# self.criterion_g = GeneratorLoss(
# l2_weight=l2_weight,
# gdl_weight=gdl_weight,
# adv_weight=adv_weight,
# logger=self.logger,
# )
self.criterion_l1 = torch.nn.L1Loss(reduction="mean")
def run(self):
losses_d = []
losses_g = []
for epoch in range(1, self.epochs + 1):
logger.debug(
f"Run epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs} ..."
)
_losses_d, _losses_g = self._train_epoch()
losses_d.extend(_losses_d)
losses_g.extend(_losses_g)
self._eval_epoch(epoch, "train")
self._eval_epoch(epoch, "validation")
# self.lr_scheduler_d.step()
# self.lr_scheduler_g.step()
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
if epoch % self.snapshot_epoch == 0:
self.store_snapshot(epoch)
logger.debug(
f"Finished epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs}"
)
return losses_d, losses_g
def _train_epoch(self):
logger.debug(f"Train epoch")
torch.set_grad_enabled(True)
self.discriminator = self.discriminator.train()
self.generator = self.generator.train()
losses_d = []
losses_g = []
data_loader = self.data_loaders["train"]
for i, (recons, mu_maps) in enumerate(data_loader):
print(
f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
end="\r",
)
recons = recons.to(self.device)
mu_maps = mu_maps.to(self.device)
loss_d_real, loss_d_fake, loss_g = self._step(recons, mu_maps)
losses_d.append(loss_d_real + loss_d_fake)
losses_g.append(loss_g)
return losses_d, losses_g
def _step(self, recons, mu_maps_real):
batch_size = recons.shape[0]
with torch.set_grad_enabled(True):
self.optimizer_d.zero_grad()
self.optimizer_g.zero_grad()
# compute fake mu maps with generator
mu_maps_fake = self.generator(recons)
# compute discriminator loss for fake mu maps
inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
outputs_d_fake = self.discriminator(inputs_d_fake.detach()) # note the detach, so that gradients are not computed for the generator
labels_fake = torch.full((outputs_d_fake.shape), LABEL_FAKE, device=self.device)
loss_d_fake = self.criterion_d(outputs_d_fake, labels_fake)
# compute discriminator loss for real mu maps
inputs_d_real = torch.cat((recons, mu_maps_real), dim=1)
outputs_d_real = self.discriminator(inputs_d_real) # note the detach, so that gradients are not computed for the generator
labels_real = torch.full((outputs_d_fake.shape), LABEL_REAL, device=self.device)
loss_d_real = self.criterion_d(outputs_d_real, labels_real)
# update discriminator
loss_d = 0.5 * (loss_d_fake + loss_d_real)
loss_d.backward() # compute gradients
self.optimizer_d.step()
inputs_d_fake = torch.cat((recons, mu_maps_fake), dim=1)
outputs_d_fake = self.discriminator(inputs_d_fake)
loss_g_adv = self.criterion_d(outputs_d_fake, labels_real)
loss_g_l1 = self.criterion_l1(mu_maps_fake, mu_maps_real)
loss_g = loss_g_adv + 100.0 * loss_g_l1
loss_g.backward()
self.optimizer_g.step()
return loss_d_real.item(), loss_d_fake.item(), loss_g.item()
def _eval_epoch(self, epoch, split_name):
logger.debug(f"Evaluate epoch on split {split_name}")
torch.set_grad_enabled(False)
self.discriminator = self.discriminator.eval()
self.generator = self.generator.eval()
loss = 0.0
updates = 0
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
data_loader = self.data_loaders[split_name]
for i, (recons, mu_maps) in enumerate(data_loader):
print(
f"Batch {str(i):>{len(str(len(data_loader)))}}/{len(data_loader)}",
end="\r",
)
recons = recons.to(self.device)
mu_maps = mu_maps.to(self.device)
outputs = self.generator(recons)
loss += torch.nn.functional.l1_loss(outputs, mu_maps)
updates += 1
loss = loss / updates
logger.info(
f"Epoch {str(epoch):>{len(str(self.epochs))}}/{self.epochs} - Loss {split_name}: {loss:.6f}"
)
def store_snapshot(self, epoch):
snapshot_file_d = f"{epoch:0{len(str(self.epochs))}d}_discriminator.pth"
snapshot_file_d = os.path.join(self.snapshot_dir, snapshot_file_d)
snapshot_file_g = f"{epoch:0{len(str(self.epochs))}d}_generator.pth"
snapshot_file_g = os.path.join(self.snapshot_dir, snapshot_file_g)
logger.debug(f"Store snapshots at {snapshot_file_d} and {snapshot_file_g}")
torch.save(self.discriminator.state_dict(), snapshot_file_d)
torch.save(self.generator.state_dict(), snapshot_file_g)
if __name__ == "__main__":
import argparse
import random
import sys
import numpy as np
from mu_map.dataset.patches import MuMapPatchDataset
from mu_map.dataset.normalization import (
MeanNormTransform,
MaxNormTransform,
GaussianNormTransform,
)
from mu_map.dataset.transform import ScaleTransform
from mu_map.logging import add_logging_args, get_logger_by_args
from mu_map.models.unet import UNet
from mu_map.models.discriminator import Discriminator, PatchDiscriminator
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
parser = argparse.ArgumentParser(
description="Train a UNet model to predict μ-maps from reconstructed scatter images",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Model Args
parser.add_argument(
"--features",
type=int,
nargs="+",
default=[64, 128, 256, 512],
help="number of features in the layers of the UNet structure",
)
# Dataset Args
parser.add_argument(
"--dataset_dir",
type=str,
default="data/initial/",
help="the directory where the dataset for training is found",
)
parser.add_argument(
"--input_norm",
type=str,
choices=["none", "mean", "max", "gaussian"],
default="mean",
help="type of normalization applied to the reconstructions",
)
parser.add_argument(
"--patch_size",
type=int,
default=32,
help="the size of patches extracted for each reconstruction",
)
parser.add_argument(
"--patch_offset",
type=int,
default=20,
help="offset to ignore the border of the image",
)
parser.add_argument(
"--number_of_patches",
type=int,
help="number of patches extracted for each image",
)
parser.add_argument(
"--no_shuffle",
action="store_true",
help="do not shuffle patches in the dataset",
)
# Training Args
parser.add_argument(
"--seed",
type=int,
help="seed used for random number generation",
)
parser.add_argument(
"--batch_size",
type=int,
help="the batch size used for training",
)
parser.add_argument(
"--output_dir",
type=str,
default="train_data",
help="directory in which results (snapshots and logs) of this training are saved",
)
parser.add_argument(
"--epochs",
type=int,
default=100,
help="the number of epochs for which the model is trained",
)
parser.add_argument(
"--device",
type=str,
default="cuda:0" if torch.cuda.is_available() else "cpu",
help="the device (cpu or gpu) with which the training is performed",
)
parser.add_argument(
"--mse_loss_weight",
type=float,
default=1.0,
help="weight for the L2-Loss of the generator",
)
parser.add_argument(
"--gdl_loss_weight",
type=float,
default=1.0,
help="weight for the Gradient-Difference-Loss of the generator",
)
parser.add_argument(
"--adv_loss_weight",
type=float,
default=20.0,
help="weight for the Adversarial-Loss of the generator",
)
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
parser.add_argument(
"--lr", type=float, default=0.001, help="the initial learning rate for training"
)
parser.add_argument(
"--lr_decay_factor",
type=float,
default=0.99,
help="decay factor for the learning rate",
)
parser.add_argument(
"--lr_decay_epoch",
type=int,
default=1,
help="frequency in epochs at which the learning rate is decayed",
)
parser.add_argument(
"--snapshot_dir",
type=str,
default="snapshots",
help="directory under --output_dir where snapshots are stored",
)
parser.add_argument(
"--snapshot_epoch",
type=int,
default=10,
help="frequency in epochs at which snapshots are stored",
)
parser.add_argument(
"--generator_weights",
type=str,
help="use pre-trained weights for the generator",
)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Logging Args
add_logging_args(parser, defaults={"--logfile": "train.log"})
args = parser.parse_args()
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
args.snapshot_dir = os.path.join(args.output_dir, args.snapshot_dir)
if not os.path.exists(args.snapshot_dir):
os.mkdir(args.snapshot_dir)
else:
if len(os.listdir(args.snapshot_dir)) > 0:
print(
f"ATTENTION: Snapshot directory [{args.snapshot_dir}] already exists and is not empty!"
)
print(f" Exit so that data is not accidentally overwritten!")
exit(1)
args.logfile = os.path.join(args.output_dir, args.logfile)
device = torch.device(args.device)
logger = get_logger_by_args(args)
logger.info(args)
args.seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
logger.info(f"Seed: {args.seed}")
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# discriminator = Discriminator(in_channels=2, input_size=args.patch_size)
discriminator = PatchDiscriminator(in_channels=2, input_size=args.patch_size)
discriminator = discriminator.to(device)
generator = UNet(in_channels=1, features=args.features)
generator = generator.to(device)
if args.generator_weights:
logger.debug(f"Load generator weights from {args.generator_weights}")
generator.load_state_dict(torch.load(args.generator_weights, map_location=device))
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
transform_normalization = None
if args.input_norm == "mean":
transform_normalization = MeanNormTransform()
elif args.input_norm == "max":
transform_normalization = MaxNormTransform()
elif args.input_norm == "gaussian":
transform_normalization = GaussianNormTransform()
data_loaders = {}
for split in ["train", "validation"]:
dataset = MuMapPatchDataset(
args.dataset_dir,
patches_per_image=args.number_of_patches,
patch_size=args.patch_size,
patch_offset=args.patch_offset,
shuffle=not args.no_shuffle,
split_name=split,
transform_normalization=transform_normalization,
logger=logger,
)
data_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
pin_memory=True,
num_workers=1,
)
data_loaders[split] = data_loader
training = cGANTraining(
discriminator=discriminator,
generator=generator,
data_loaders=data_loaders,
epochs=args.epochs,
device=device,
lr_decay_factor_d=0.99,
lr_decay_epoch_d=1,
lr_decay_factor_g=0.99,
lr_decay_epoch_g=1,
l2_weight=args.mse_loss_weight,
gdl_weight=args.gdl_loss_weight,
adv_weight=args.adv_loss_weight,
snapshot_dir=args.snapshot_dir,
snapshot_epoch=args.snapshot_epoch,
logger=logger,
)
losses_d, losses_g = training.run()
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].plot(losses_d)
axs[0].set_title("Discriminator Loss")
axs[0].set_xlabel("Iteration")
axs[0].set_ylabel("Loss")
axs[1].plot(losses_g, label="Generator")
axs[1].set_title("Generator Loss")
axs[1].set_xlabel("Iteration")
axs[1].set_ylabel("Loss")
plt.savefig("losses.png")