Newer
Older
import os
import pandas as pd
import pydicom
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
HEADER_DISC_FIRST = "discard_first"
HEADER_DISC_LAST = "discard_last"
def discard_slices(row, μ_map):
"""
Discard slices based on the flags in the row of th according table.
The row is expected to contain the flags 'discard_first' and 'discard_last'.
:param row: the row of meta configuration file of a dataset
:param μ_map: the μ_map
:return: the μ_map with according slices removed
"""
_res = μ_map
if row[HEADER_DISC_FIRST]:
_res = _res[1:]
if row[HEADER_DISC_LAST]:
_res = _res[:-1]
return _res
def align_images(image_1: np.ndarray, image_2: np.ndarray):
"""
Align one image to another on the first axis (z-axis).
It is assumed that the second image has less slices than the first.
Then, the first image is shortened in a way that the centers of both images lie on top of each other.
:param image_1: the image to be aligned
:param image_2: the image to which image_1 is aligned
:return: the aligned image_1
"""
assert (
image_1.shape[0] > image_2.shape[0]
), f"Alignment is based on the fact that image 1 has more slices {image_1.shape[0]} than image_2 {image_.shape[0]}"
# central slice of image 2
c_2 = image_2.shape[0] // 2
# image to the left and right of the center
left = c_2
right = image_2.shape[0] - c_2
# central slice of image 1
c_1 = image_1.shape[0] // 2
# select center and same amount to the left/right as image_2
return image_1[(c_1 - left) : (c_1 + right)]
class MuMapDataset(Dataset):
def __init__(
self,
dataset_dir: str,
csv_file: str = "meta.csv",
images_dir: str = "images",
discard_μ_map_slices: bool = True,
self.dir = dataset_dir
self.dir_images = os.path.join(dataset_dir, images_dir)
self.csv_file = os.path.join(dataset_dir, csv_file)
# read CSV file and from that access DICOM files
self.table = pd.read_csv(self.csv_file)
self.discard_μ_map_slices = discard_μ_map_slices
def __getitem__(self, index: int):
row = self.table.iloc[index]
recon_file = os.path.join(self.dir_images, row["file_recon_no_ac"])
mu_map_file = os.path.join(self.dir_images, row["file_mu_map"])
recon = pydicom.dcmread(recon_file).pixel_array
mu_map = pydicom.dcmread(mu_map_file).pixel_array
if self.discard_μ_map_slices:
mu_map = discard_slices(row, mu_map)
recon = align_images(recon, mu_map)
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
if __name__ == "__main__":
dataset = MuMapDataset("data/tmp")
print(f"Images: {len(dataset)}")
import cv2 as cv
wname = "Images"
cv.namedWindow(wname, cv.WINDOW_NORMAL)
cv.resizeWindow(wname, 1024, 512)
space = np.full((128, 10), 239, np.uint8)
def to_grayscale(img: np.ndarray, min_val=None, max_val=None):
if min_val is None:
min_val = img.min()
if max_val is None:
max_val = img.max()
_img = (img - min_val) / (max_val - min_val)
_img = (_img * 255).astype(np.uint8)
return _img
for i in range(len(dataset)):
ir = 0
im = 0
recon, mu_map = dataset[i]
print(f"{i+1}/{len(dataset)} - {recon.shape} - {mu_map.shape}")
to_show = np.hstack(
(
to_grayscale(recon[ir], min_val=recon.min(), max_val=recon.max()),
space,
to_grayscale(mu_map[im], min_val=mu_map.min(), max_val=mu_map.max()),
)
)
cv.imshow(wname, to_show)
key = cv.waitKey(100)
while True:
ir = (ir + 1) % recon.shape[0]
im = (im + 1) % mu_map.shape[0]
to_show = np.hstack(
(
to_grayscale(recon[ir], min_val=recon.min(), max_val=recon.max()),
space,
to_grayscale(
mu_map[im], min_val=mu_map.min(), max_val=mu_map.max()
),
)
)
cv.imshow(wname, to_show)
key = cv.waitKey(100)
if key == ord("n"):
break
if key == ord("q"):
exit(0)