Skip to content
Snippets Groups Projects
Commit 253b31d3 authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

create initial structure

parent 1bc7b751
No related branches found
No related tags found
No related merge requests found
from .datasets import *
import os
import pandas as pd
import pydicom
from torch.utils.data import Dataset
class MuMapDataset(Dataset):
def __init__(self):
super().__init__()
# read csv file and from that access dicom files
def __getitem__(self, index):
pass
def __len__(self):
pass
__all__ = [MuMapDataset.__name__]
import torch
def norm_max(tensor: torch.Tensor):
return (tensor - tensor.min()) / (tensor.max() - tensor.min())
class MaxNorm:
def __call__(self, tensor: torch.Tensor):
return norm_max(tensor)
def norm_mean(tensor: torch.Tensor):
return tensor / tensor.mean()
class MeanNorm:
def __call__(self, tensor: torch.Tensor):
return norm_mean(tensor)
def norm_gaussian(tensor: torch.Tensor):
return (tensor - tensor.mean()) / tensor.std()
class GaussianNorm:
def __call__(self, tensor: torch.Tensor):
return norm_gaussian(tensor)
__all__ = [
norm_max.__name__,
norm_mean.__name__,
norm_gaussian.__name__,
MaxNorm.__name__,
MeanNorm.__name__,
GaussianNorm.__name__,
]
import torch
from .data.preprocessing import *
means = torch.full((10, 10, 10), 5.0)
stds = torch.full((10, 10, 10), 10.0)
x = torch.normal(means, stds)
print(f"Before: mean={x.mean():.3f} std={x.std():.3f}")
y = norm_gaussian(x)
print(f" After: mean={y.mean():.3f} std={y.std():.3f}")
y = GaussianNorm()(x)
print(f" After: mean={y.mean():.3f} std={y.std():.3f}")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment