-
Tamino Huxohl authoredTamino Huxohl authored
preprocessing.py 745 B
import torch
def norm_max(tensor: torch.Tensor):
return (tensor - tensor.min()) / (tensor.max() - tensor.min())
class MaxNorm:
def __call__(self, tensor: torch.Tensor):
return norm_max(tensor)
def norm_mean(tensor: torch.Tensor):
return tensor / tensor.mean()
class MeanNorm:
def __call__(self, tensor: torch.Tensor):
return norm_mean(tensor)
def norm_gaussian(tensor: torch.Tensor):
return (tensor - tensor.mean()) / tensor.std()
class GaussianNorm:
def __call__(self, tensor: torch.Tensor):
return norm_gaussian(tensor)
__all__ = [
norm_max.__name__,
norm_mean.__name__,
norm_gaussian.__name__,
MaxNorm.__name__,
MeanNorm.__name__,
GaussianNorm.__name__,
]