Skip to content
Snippets Groups Projects
Commit ac2a7ecc authored by Tamino Huxohl's avatar Tamino Huxohl
Browse files

fixes to random search

parent b7fad94b
No related branches found
No related tags found
No related merge requests found
......@@ -276,14 +276,16 @@ class RandomSearchCGAN(RandomSearch):
return [[32, 64, 128, 256], [64, 128, 256, 512]]
self.param_sampler["discriminator_conv_features"] = DependentChoiceSampler(discriminator_conv_features)
self.param_sampler["generator_features"] = ChoiceSampler([
[128, 256, 512],
[64, 128, 256, 512],
[32, 64, 128, 256, 512],
])
# training parameters
self.param_sampler["epochs"] = ChoiceSampler([50, 60, 70, 80, 90])
self.param_sampler["batch_size"] = ChoiceSampler([32, 64])
def batch_size(patch_size: int, **kwargs):
return [32] if patch_size == 64 else [64]
# self.param_sampler["batch_size"] = ChoiceSampler([32, 64])
self.param_sampler["batch_size"] = DependentChoiceSampler(batch_size)
self.param_sampler["lr"] = FloatIntervalSampler(0.1, 0.0001)
self.param_sampler["lr_decay"] = ChoiceSampler([False, True])
self.param_sampler["lr_decay_epoch"] = ChoiceSampler([1])
......@@ -393,7 +395,7 @@ class RandomSearchCGAN(RandomSearch):
)
self.logger.debug(f"Init discriminator ....")
input_size = (2, self.n_slices, self.params["patch_size"], self.params["patch_size"])
input_size = (self.n_slices, self.params["patch_size"], self.params["patch_size"])
if self.params["discriminator_type"] == "class":
discriminator = Discriminator(
in_channels=2, input_size=input_size, conv_features=self.params["discriminator_conv_features"],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment