Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mu-map
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tamino Huxohl
mu-map
Commits
b36a8455
Commit
b36a8455
authored
2 years ago
by
Tamino Huxohl
Browse files
Options
Downloads
Patches
Plain Diff
make default training configurable via argparse
parent
d66fd526
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mu_map/training/default.py
+163
-40
163 additions, 40 deletions
mu_map/training/default.py
with
163 additions
and
40 deletions
mu_map/training/default.py
+
163
−
40
View file @
b36a8455
import
os
import
os
from
typing
import
Dict
import
torch
import
torch
class
Training
():
from
mu_map.logging
import
get_logger
def
__init__
(
self
,
model
,
data_loaders
,
epochs
,
logger
):
class
Training
:
def
__init__
(
self
,
model
:
torch
.
nn
.
Module
,
data_loaders
:
Dict
[
str
,
torch
.
utils
.
data
.
DataLoader
],
epochs
:
int
,
device
:
torch
.
device
,
lr
:
float
,
lr_decay_factor
:
float
,
lr_decay_epoch
:
int
,
snapshot_dir
:
str
,
snapshot_epoch
:
int
,
logger
=
None
,
):
self
.
model
=
model
self
.
model
=
model
self
.
data_loaders
=
data_loaders
self
.
data_loaders
=
data_loaders
self
.
epochs
=
epochs
self
.
epochs
=
epochs
self
.
device
=
torch
.
device
(
"
cpu
"
)
self
.
device
=
device
self
.
snapshot_dir
=
"
tmp
"
self
.
snapshot_epoch
=
5
self
.
loss_func
=
torch
.
nn
.
MSELoss
()
# self.lr = 1e-3
self
.
lr
=
lr
# self.lr_decay_factor = 0.99
self
.
lr_decay_factor
=
lr_decay_factor
self
.
lr
=
0.1
self
.
lr_decay_epoch
=
lr_decay_epoch
self
.
lr_decay_factor
=
0.5
self
.
lr_decay_epoch
=
1
self
.
optimizer
=
torch
.
optim
.
Adam
(
self
.
model
.
parameters
(),
lr
=
self
.
lr
)
self
.
snapshot_dir
=
snapshot_dir
self
.
lr_scheduler
=
torch
.
optim
.
lr_scheduler
.
StepLR
(
self
.
optimizer
,
step_size
=
self
.
lr_decay_epoch
,
gamma
=
self
.
lr_decay_factor
)
self
.
snapshot_epoch
=
snapshot_epoch
self
.
logger
=
logger
self
.
logger
=
logger
if
logger
is
not
None
else
get_logger
()
self
.
optimizer
=
torch
.
optim
.
Adam
(
self
.
model
.
parameters
(),
lr
=
self
.
lr
)
self
.
lr_scheduler
=
torch
.
optim
.
lr_scheduler
.
StepLR
(
self
.
optimizer
,
step_size
=
self
.
lr_decay_epoch
,
gamma
=
self
.
lr_decay_factor
)
self
.
loss_func
=
torch
.
nn
.
MSELoss
(
reduction
=
"
mean
"
)
def
run
(
self
):
def
run
(
self
):
for
epoch
in
range
(
1
,
self
.
epochs
+
1
):
for
epoch
in
range
(
1
,
self
.
epochs
+
1
):
logger
.
debug
(
f
"
Run epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
...
"
)
logger
.
debug
(
f
"
Run epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
...
"
)
self
.
_run_epoch
(
self
.
data_loaders
[
"
train
"
],
phase
=
"
train
"
)
self
.
_run_epoch
(
self
.
data_loaders
[
"
train
"
],
phase
=
"
train
"
)
loss_training
=
self
.
_run_epoch
(
self
.
data_loaders
[
"
train
"
],
phase
=
"
eval
"
)
loss_training
=
self
.
_run_epoch
(
self
.
data_loaders
[
"
train
"
],
phase
=
"
val
"
)
logger
.
info
(
f
"
Epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
- Loss TRAIN:
{
loss_training
:
.
4
f
}
"
)
logger
.
info
(
loss_validation
=
self
.
_run_epoch
(
self
.
data_loaders
[
"
validation
"
],
phase
=
"
eval
"
)
f
"
Epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
- Loss TRAIN:
{
loss_training
:
.
4
f
}
"
logger
.
info
(
f
"
Epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
- Loss VAL:
{
loss_validation
:
.
4
f
}
"
)
)
loss_validation
=
self
.
_run_epoch
(
self
.
data_loaders
[
"
validation
"
],
phase
=
"
val
"
)
logger
.
info
(
f
"
Epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
- Loss VAL:
{
loss_validation
:
.
4
f
}
"
)
# ToDo: log outputs and time
# ToDo: log outputs and time
_previous
=
self
.
lr_scheduler
.
get_last_lr
()[
0
]
_previous
=
self
.
lr_scheduler
.
get_last_lr
()[
0
]
self
.
lr_scheduler
.
step
()
self
.
lr_scheduler
.
step
()
logger
.
debug
(
f
"
Update learning rate from
{
_previous
:
.
4
f
}
to
{
self
.
lr_scheduler
.
get_last_lr
()[
0
]
:
.
4
f
}
"
)
logger
.
debug
(
f
"
Update learning rate from
{
_previous
:
.
4
f
}
to
{
self
.
lr_scheduler
.
get_last_lr
()[
0
]
:
.
4
f
}
"
)
if
epoch
%
self
.
snapshot_epoch
==
0
:
if
epoch
%
self
.
snapshot_epoch
==
0
:
self
.
store_snapshot
(
epoch
)
self
.
store_snapshot
(
epoch
)
logger
.
debug
(
f
"
Finished epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
+
1
}
"
)
logger
.
debug
(
f
"
Finished epoch
{
str
(
epoch
)
:
>
{
len
(
str
(
self
.
epochs
))
}}
/
{
self
.
epochs
}
"
)
def
_run_epoch
(
self
,
data_loader
,
phase
):
def
_run_epoch
(
self
,
data_loader
,
phase
):
logger
.
debug
(
f
"
Run epoch in phase
{
phase
}
"
)
logger
.
debug
(
f
"
Run epoch in phase
{
phase
}
"
)
self
.
model
.
train
()
if
phase
==
"
train
"
else
self
.
model
.
eval
()
self
.
model
.
train
()
if
phase
==
"
train
"
else
self
.
model
.
eval
()
epoch_loss
=
0
epoch_loss
=
0
loss_updates
=
0
for
i
,
(
inputs
,
labels
)
in
enumerate
(
data_loader
):
for
i
,
(
inputs
,
labels
)
in
enumerate
(
data_loader
):
print
(
f
"
Batch
{
str
(
i
)
:
>
{
len
(
str
(
len
(
data_loader
)))
}}
/
{
len
(
data_loader
)
}
"
,
end
=
"
\r
"
)
print
(
f
"
Batch
{
str
(
i
)
:
>
{
len
(
str
(
len
(
data_loader
)))
}}
/
{
len
(
data_loader
)
}
"
,
end
=
"
\r
"
,
)
inputs
=
inputs
.
to
(
self
.
device
)
inputs
=
inputs
.
to
(
self
.
device
)
labels
=
labels
.
to
(
self
.
device
)
labels
=
labels
.
to
(
self
.
device
)
...
@@ -66,9 +96,9 @@ class Training():
...
@@ -66,9 +96,9 @@ class Training():
loss
.
backward
()
loss
.
backward
()
self
.
optimizer
.
step
()
self
.
optimizer
.
step
()
epoch_loss
+=
loss
.
item
()
/
inputs
.
shape
[
0
]
epoch_loss
+=
loss
.
item
()
return
epoch_loss
loss_updates
+=
1
return
epoch_loss
/
loss_updates
def
store_snapshot
(
self
,
epoch
):
def
store_snapshot
(
self
,
epoch
):
snapshot_file
=
f
"
{
epoch
:
0
{
len
(
str
(
self
.
epochs
))
}
d
}
.pth
"
snapshot_file
=
f
"
{
epoch
:
0
{
len
(
str
(
self
.
epochs
))
}
d
}
.pth
"
...
@@ -78,20 +108,113 @@ class Training():
...
@@ -78,20 +108,113 @@ class Training():
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
from
mu_map.data.mock
import
MuMapMockDataset
import
argparse
from
mu_map.logging
import
get_logger
from
mu_map.models.unet
import
UNet
logger
=
get_logger
(
logfile
=
"
train.log
"
,
loglevel
=
"
DEBUG
"
)
from
mu_map.dataset.mock
import
MuMapMockDataset
from
mu_map.logging
import
add_logging_args
,
get_logger_by_args
from
mu_map.models.unet
import
UNet
model
=
UNet
(
in_channels
=
1
,
features
=
[
8
,
16
])
parser
=
argparse
.
ArgumentParser
(
print
(
model
)
description
=
"
Train a UNet model to predict μ-maps from reconstructed scatter images
"
,
dataset
=
MuMapMockDataset
()
formatter_class
=
argparse
.
ArgumentDefaultsHelpFormatter
,
data_loader_train
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
dataset
,
batch_size
=
2
,
shuffle
=
True
,
pin_memory
=
True
,
num_workers
=
1
)
)
data_loader_val
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
dataset
,
batch_size
=
2
,
shuffle
=
True
,
pin_memory
=
True
,
num_workers
=
1
)
# Model Args
parser
.
add_argument
(
"
--features
"
,
type
=
int
,
nargs
=
"
+
"
,
default
=
[
8
,
16
],
help
=
"
number of features in the layers of the UNet structure
"
,
)
# Dataset Args
# parser.add_argument("--features", type=int, nargs="+", default=[8, 16], help="number of features in the layers of the UNet structure")
# Training Args
parser
.
add_argument
(
"
--output_dir
"
,
type
=
str
,
default
=
"
train_data
"
,
help
=
"
directory in which results (snapshots and logs) of this training are saved
"
,
)
parser
.
add_argument
(
"
--epochs
"
,
type
=
int
,
default
=
10
,
help
=
"
the number of epochs for which the model is trained
"
,
)
parser
.
add_argument
(
"
--device
"
,
type
=
str
,
default
=
"
cuda:0
"
if
torch
.
cuda
.
is_available
()
else
"
cpu
"
,
help
=
"
the device (cpu or gpu) with which the training is performed
"
,
)
parser
.
add_argument
(
"
--lr
"
,
type
=
float
,
default
=
0.1
,
help
=
"
the initial learning rate for training
"
)
parser
.
add_argument
(
"
--lr_decay_factor
"
,
type
=
float
,
default
=
0.99
,
help
=
"
decay factor for the learning rate
"
,
)
parser
.
add_argument
(
"
--lr_decay_epoch
"
,
type
=
int
,
default
=
1
,
help
=
"
frequency in epochs at which the learning rate is decayed
"
,
)
parser
.
add_argument
(
"
--snapshot_dir
"
,
type
=
str
,
default
=
"
snapshots
"
,
help
=
"
directory under --output_dir where snapshots are stored
"
,
)
parser
.
add_argument
(
"
--snapshot_epoch
"
,
type
=
int
,
default
=
10
,
help
=
"
frequency in epochs at which snapshots are stored
"
,
)
# Logging Args
add_logging_args
(
parser
,
defaults
=
{
"
--logfile
"
:
"
train.log
"
})
args
=
parser
.
parse_args
()
if
not
os
.
path
.
exists
(
args
.
output_dir
):
os
.
mkdir
(
args
.
output_dir
)
args
.
snapshot_dir
=
os
.
path
.
join
(
args
.
output_dir
,
args
.
snapshot_dir
)
if
not
os
.
path
.
exists
(
args
.
snapshot_dir
):
os
.
mkdir
(
args
.
snapshot_dir
)
args
.
logfile
=
os
.
path
.
join
(
args
.
output_dir
,
args
.
logfile
)
device
=
torch
.
device
(
args
.
device
)
logger
=
get_logger_by_args
(
args
)
model
=
UNet
(
in_channels
=
1
,
features
=
args
.
features
)
dataset
=
MuMapMockDataset
(
logger
=
logger
)
data_loader_train
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
dataset
,
batch_size
=
2
,
shuffle
=
True
,
pin_memory
=
True
,
num_workers
=
1
)
data_loader_val
=
torch
.
utils
.
data
.
DataLoader
(
dataset
=
dataset
,
batch_size
=
2
,
shuffle
=
True
,
pin_memory
=
True
,
num_workers
=
1
)
data_loaders
=
{
"
train
"
:
data_loader_train
,
"
validation
"
:
data_loader_val
}
data_loaders
=
{
"
train
"
:
data_loader_train
,
"
validation
"
:
data_loader_val
}
training
=
Training
(
model
,
data_loaders
,
10
,
logger
)
training
=
Training
(
model
=
model
,
data_loaders
=
data_loaders
,
epochs
=
args
.
epochs
,
device
=
device
,
lr
=
args
.
lr
,
lr_decay_factor
=
args
.
lr_decay_factor
,
lr_decay_epoch
=
args
.
lr_decay_epoch
,
snapshot_dir
=
args
.
snapshot_dir
,
snapshot_epoch
=
args
.
snapshot_epoch
,
logger
=
logger
,
)
training
.
run
()
training
.
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment