Newer
Older
import matplotlib.pyplot as plt
import numpy as np
import numpy.typing as npt
import torch
import torch.nn.functional as F
from PIL import Image
from torch.optim import Adam
from torch.utils.data import DataLoader, RandomSampler
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
from torchvision.utils import save_image, make_grid
device = torch.device("cuda")
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
dx = [+1, 0, -1, 0]
dy = [0, +1, 0, -1]
# perform depth first search for each candidate/unlabeled region
# reference: https://stackoverflow.com/questions/14465297/connected-component-labeling-implementation
def dfs(mask: npt.NDArray, x: int, y: int, labels: npt.NDArray, current_label: int):
n_rows, n_cols = mask.shape
if x < 0 or x == n_rows:
return
if y < 0 or y == n_cols:
return
if labels[x][y] or not mask[x][y]:
return # already labeled or not marked with 1 in image
# mark the current cell
labels[x][y] = current_label
# recursively mark the neighbors
for direction in range(4):
dfs(mask, x + dx[direction], y + dy[direction], labels, current_label)
def find_components(mask: npt.NDArray):
label = 0
n_rows, n_cols = mask.shape
labels = np.zeros(mask.shape, dtype=np.int8)
for i in range(n_rows):
for j in range(n_cols):
if not labels[i][j] and mask[i][j]:
label += 1
dfs(mask, i, j, labels, label)
return labels
# https://stackoverflow.com/questions/31400769/bounding-box-of-numpy-array
def bbox(img):
max_x, max_y = img.shape
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
rmin = rmin - 1 if rmin > 0 else rmin
cmin = cmin - 1 if cmin > 0 else cmin
rmax = rmax + 1 if rmax < max_x else rmax
cmax = cmax + 1 if cmax < max_y else cmax
return rmin, rmax, cmin, cmax
def extract_single_masks(labels: npt.NDArray):
masks = []
for l in range(labels.max() + 1):
mask = (labels == l).astype(np.int8)
rmin, rmax, cmin, cmax = bbox(mask)
masks.append(mask[rmin : rmax + 1, cmin : cmax + 1])
return masks
class VAE(nn.Module):
"""
https://github.com/pytorch/examples/blob/main/vae/main.py
"""
def __init__(self, bottleneck=2, image_dim=4096):
super(VAE, self).__init__()
self.bottleneck = bottleneck
self.image_dim = image_dim
self.prelim_encode = nn.Sequential(
nn.Flatten(), nn.Linear(image_dim, 400), nn.ReLU()
)
self.encode_mu = nn.Sequential(nn.Linear(400, bottleneck))
self.encode_logvar = nn.Sequential(nn.Linear(400, bottleneck))
self.decode = nn.Sequential(
nn.Linear(bottleneck, 400),
nn.ReLU(),
nn.Linear(400, image_dim),
nn.Sigmoid(),
)
def encode(self, x):
# h1 = F.relu(self.encode(x))
# return self.encode_mu(h1), self.encode_logvar(h1)
x = self.prelim_encode(x)
return self.encode_mu(x), self.encode_logvar(x)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# Reconstruction + KL divergence losses summed over all elements and batch
def loss(self, recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 4096), reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
class CONVVAE(nn.Module):
def __init__(
self,
bottleneck=2,
):
super(CONVVAE, self).__init__()
self.bottleneck = bottleneck
self.conv1 = nn.Sequential(
nn.Conv2d(1, 16, 5),
nn.ReLU(),
nn.MaxPool2d((2, 2), return_indices=True), # -> 30x30x16
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 3),
nn.ReLU(),
nn.MaxPool2d((2, 2), return_indices=True), # -> 14x14x32
)
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, 3),
nn.ReLU(),
nn.MaxPool2d((2, 2), return_indices=True), # -> 6x6x64
)
self.conv4 = nn.Sequential(
nn.Conv2d(64, 128, 5),
nn.ReLU(),
nn.MaxPool2d((2, 2), return_indices=True), # -> 1x1x128
self.encode_mu = nn.Sequential(
nn.Flatten(), nn.Linear(self.feature_dim, self.bottleneck)
)
self.encode_logvar = nn.Sequential(
nn.Flatten(), nn.Linear(self.feature_dim, self.bottleneck)
)
self.decode = nn.Sequential(
nn.MaxUnpool2d((2, 2)),
nn.ConvTranspose2d(128, 64, 5),
nn.MaxUnpool2d((2, 2)),
nn.ConvTranspose2d(32, 16, 3),
nn.ReLU(),
nn.MaxUnpool2d((2, 2)),
nn.ConvTranspose2d(16, 1, 5),
nn.Sigmoid(),
)
def encode(self, x):
x, indices = self.conv(x)
mu = self.encode_mu(x)
logvar = self.encode_logvar(x)
return mu, logvar
# def decode(self, z):
# z = self.decode_linear(z)
# # z = z.view(-1, 128, 1, 1)
# return self.decode_conv(z)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def loss(self, recon_x, x, mu, logvar):
"""https://github.com/pytorch/examples/blob/main/vae/main.py"""
BCE = F.binary_cross_entropy(recon_x, x, reduction="sum")
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def load_data():
transform = transforms.Compose(
[
transforms.Grayscale(),
transforms.Resize(
(64, 64), interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
]
)
trajectories = [
# "v3_subtle_iceberg_lettuce_nymph-6_203-2056",
"v3_absolute_grape_changeling-16_2277-4441",
"v3_content_squash_angel-3_16074-17640",
"v3_smooth_kale_loch_ness_monster-1_4439-6272",
"v3_cute_breadfruit_spirit-6_17090-19102",
"v3_key_nectarine_spirit-2_7081-9747",
"v3_subtle_iceberg_lettuce_nymph-6_3819-6049",
"v3_juvenile_apple_angel-30_396415-398113",
"v3_subtle_iceberg_lettuce_nymph-6_6100-8068",
]
datasets = []
for trj in trajectories:
datasets.append(
ImageFolder(
f"activation_vis/out/critic/masks/{trj}/0/4", transform=transform
)
)
dataset = torch.utils.data.ConcatDataset(datasets)
data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
return data_loader, dataset
def train(epoch, model: VAE or CONVVAE, optimizer, data_loader, log_interval=40):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(data_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(data_loader.dataset),
100.0 * batch_idx / len(data_loader),
loss.item() / len(data),
)
)
print(
"====> Epoch: {} Average loss: {:.4f}".format(
epoch, train_loss / len(data_loader.dataset)
)
)
def test(epoch, models, dataset):
for model in models:
model.eval()
test_loss = [0 for _ in models]
test_batch_size = 32
sampler = RandomSampler(dataset, replacement=True, num_samples=64)
test_loader = DataLoader(dataset, batch_size=test_batch_size, sampler=sampler)
comp_data = None
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
for j, model in enumerate(models):
recon_batch, mu, logvar = model(data)
test_loss[j] += model.loss(recon_batch, data, mu, logvar).item()
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
if i == 0:
n = min(data.size(0), 20)
if comp_data == None:
comp_data = data[:n]
comp_data = torch.cat(
[comp_data, recon_batch.view(test_batch_size, 1, 64, 64)[:n]]
)
if i == 0:
if not os.path.exists("results"):
os.makedirs("results")
save_image(
comp_data.cpu(),
"results/reconstruction_" + str(epoch) + ".png",
nrow=min(data.size(0), 20),
)
for i, model in enumerate(models):
test_loss[i] /= len(test_loader.dataset)
print(f"====> Test set loss model {i}: {test_loss[i]:.4f}")
def test_mask(model: nn.Module, path: str, label: int, epsilon=0.4):
model.eval()
image = transforms.F.to_tensor(transforms.F.to_grayscale(Image.open(path)))
labels = find_components(image[0])
single_masks = extract_single_masks(labels)
mask = transforms.F.to_tensor(
transforms.F.resize(
transforms.F.to_pil_image((single_masks[label] * 255).astype(np.uint8)),
(64, 64),
)
)
with torch.no_grad():
mask = mask.to(device)
recon_x, _, _ = model(mask)
recon_bits = recon_x.view(64, 64).cpu().numpy() > epsilon
mask_bits = mask.cpu().numpy() > 0
TP = (mask_bits & recon_bits).sum()
FP = (recon_bits & ~mask_bits).sum()
FN = (mask_bits & ~recon_bits).sum()
prec = TP / (TP + FP)
rec = TP / (TP + FN)
# loss = pixelwise_loss(recon_x, mask)
comp_data = torch.cat(
[mask[0].cpu(), recon_x.view(64, 64).cpu(), torch.from_numpy(recon_bits)]
)
# print(f"mask loss: {loss:.4f}")
return prec, rec, comp_data
def distance_measure(model: VAE, img: Tensor):
model.eval()
with torch.no_grad():
mask = img.to(device)
recon, mean, _ = model(mask)
# TODO: apply threshold here?!
_, recon_mean, _ = model(recon)
distance = torch.norm(mean - recon_mean, p=2)
return distance, make_grid(
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
)
def complexity_measure(
model_gb: nn.Module,
model_lb: nn.Module,
img: Tensor,
epsilon=0.4,
save_preliminary=False,
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
recon_bits_gb = recon_gb.view(-1, 64, 64).cpu() > epsilon
recon_bits_lb = recon_lb.view(-1, 64, 64).cpu() > epsilon
mask_bits = mask[0].cpu() > 0
if save_preliminary:
save_image(
torch.stack(
[mask_bits.float(), recon_bits_gb.float(), recon_bits_lb.float()]
).cpu(),
f"shape_complexity/results/mask_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
save_image(
torch.stack(
[
(mask_bits & recon_bits_gb).float(),
(recon_bits_gb & ~mask_bits).float(),
(mask_bits & recon_bits_lb).float(),
(recon_bits_lb & ~mask_bits).float(),
]
).cpu(),
f"shape_complexity/results/tp_fp_recon{model_gb.bottleneck}_{model_lb.bottleneck}.png",
)
tp_gb = (mask_bits & recon_bits_gb).sum()
fp_gb = (recon_bits_gb & ~mask_bits).sum()
tp_lb = (mask_bits & recon_bits_lb).sum()
fp_lb = (recon_bits_lb & ~mask_bits).sum()
prec_gb = tp_gb / (tp_gb + fp_gb)
prec_lb = tp_lb / (tp_lb + fp_lb)
complexity = 1 - (prec_gb - np.abs(prec_gb - prec_lb))
complexity_lb = 1 - prec_lb
complexity_gb = 1 - prec_gb
# 1 - (0.4 - abs(0.4 - 0.7)) = 0.9
# 1 - 0.7 = 0.3
return (
complexity,
complexity_lb,
complexity_gb,
prec_gb - prec_lb,
prec_lb,
prec_gb,
make_grid(
torch.stack(
[mask[0], recon_lb.view(-1, 64, 64), recon_gb.view(-1, 64, 64)]
).cpu(),
nrow=3,
padding=0,
),
)
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
def complexity_measure_diff(
model_gb: nn.Module,
model_lb: nn.Module,
img: Tensor,
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
diff = torch.abs((recon_gb - recon_lb).cpu().sum())
return (
diff,
make_grid(
torch.stack(
[mask[0], recon_lb.view(-1, 64, 64), recon_gb.view(-1, 64, 64)]
).cpu(),
nrow=3,
padding=0,
),
)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
def alt_complexity_measure(
model_gb: nn.Module, model_lb: nn.Module, img: Tensor, epsilon=0.4
):
model_gb.eval()
model_lb.eval()
with torch.no_grad():
mask = img.to(device)
recon_gb, _, _ = model_gb(mask)
recon_lb, _, _ = model_lb(mask)
bce_gb = F.binary_cross_entropy(recon_gb, mask.view(-1, 4096), reduction="sum")
bce_lb = F.binary_cross_entropy(recon_lb, mask.view(-1, 4096), reduction="sum")
recon_bits_gb = recon_gb.view(-1, 64, 64).cpu().numpy() > epsilon
recon_bits_lb = recon_lb.view(-1, 64, 64).cpu().numpy() > epsilon
mask_bits = mask.cpu().numpy() > 0
tp_gb = (mask_bits & recon_bits_gb).sum()
fp_gb = (recon_bits_gb & ~mask_bits).sum()
tp_lb = (mask_bits & recon_bits_lb).sum()
fp_lb = (recon_bits_lb & ~mask_bits).sum()
prec_gb = tp_gb / (tp_gb + fp_gb)
prec_lb = tp_lb / (tp_lb + fp_lb)
complexity = 1 - (prec_gb - np.abs(prec_gb - prec_lb))
return complexity
def plot_samples(masks: Tensor, complexities: npt.NDArray):
dpi = 150
rows = cols = 20
total = rows * cols
n_samples, _, y, x = masks.shape
extent = (0, x - 1, 0, y - 1)
if total != n_samples:
raise Exception("shape mismatch")
fig = plt.figure(figsize=(32, 16), dpi=dpi)
for idx in np.arange(n_samples):
ax = fig.add_subplot(rows, cols, idx + 1, xticks=[], yticks=[])
plt.imshow(masks[idx][0], cmap=plt.cm.gray, extent=extent)
ax.set_title(
f"{complexities[idx]:.4f}",
fontdict={"fontsize": 6, "color": "orange"},
y=0.35,
)
fig.patch.set_facecolor("#292929")
height_px = y * rows
width_px = x * cols
fig.set_size_inches(width_px / (dpi / 2), height_px / (dpi / 2), forward=True)
fig.tight_layout(pad=0)
return fig
def visualize_sort_mean(data_loader: DataLoader, model: VAE):
recon_masks = torch.zeros((400, 3, 64, 128))
masks = torch.zeros((400, 1, 64, 64))
distances = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
distance, mask_recon_grid = distance_measure(model, mask)
distances[i] = distance
sort_idx = torch.argsort(distances)
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(distances)), np.sort(distances.numpy()))
plt.savefig("shape_complexity/results/distance_plot.png")
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
return plot_samples(masks_sorted, distances.numpy()[sort_idx]), plot_samples(
recon_masks_sorted, distances.numpy()[sort_idx]
)
def visualize_sort_diff(data_loader, model_gb: nn.Module, model_lb: nn.Module):
masks_recon = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
diffs = torch.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
diff, mask_recon_grid = complexity_measure_diff(model_gb, model_lb, mask)
masks_recon[i] = mask_recon_grid
masks[i] = mask[0]
diffs[i] = diff
sort_idx = np.argsort(np.array(diffs))
recon_masks_sorted = masks_recon.numpy()[sort_idx]
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(diffs)), np.sort(diffs))
plt.xlabel("images")
plt.ylabel("pixelwise difference of reconstructions")
plt.savefig("shape_complexity/results/px_diff_plot.png")
return plot_samples(masks_sorted, diffs[sort_idx]), plot_samples(
recon_masks_sorted, diffs[sort_idx]
)
def visualize_sort(dataset, model_gb: nn.Module, model_lb: nn.Module):
sampler = RandomSampler(dataset, replacement=True, num_samples=400)
data_loader = DataLoader(dataset, batch_size=1, sampler=sampler)
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
diffs = []
for i, (mask, _) in enumerate(data_loader, 0):
complexity, _, _, diff, mask_recon_grid = complexity_measure(
model_gb, model_lb, mask, save_preliminary=True
)
masks[i] = mask_recon_grid
diffs.append(diff)
complexities[i] = complexity
sort_idx = np.argsort(np.array(complexities))
masks_sorted = masks.numpy()[sort_idx]
plt.plot(np.arange(len(diffs)), np.sort(diffs))
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
plt.savefig("shape_complexity/results/diff_plot.png")
return plot_samples(masks_sorted, complexities[sort_idx])
def visualize_sort_fixed(data_loader, model_gb: nn.Module, model_lb: nn.Module):
masks = torch.zeros((400, 3, 64, 192))
complexities = torch.zeros((400,))
complexities_lb = torch.zeros((400,))
complexities_gb = torch.zeros((400,))
diffs = []
prec_lbs = []
prec_gbs = []
for i, (mask, _) in enumerate(data_loader, 0):
(
complexity,
lb,
gb,
diff,
prec_lb,
prec_gb,
mask_recon_grid,
) = complexity_measure(model_gb, model_lb, mask, save_preliminary=True)
masks[i] = mask_recon_grid
diffs.append(diff)
prec_lbs.append(prec_lb)
prec_gbs.append(prec_gb)
complexities[i] = complexity
complexities_lb[i] = lb
complexities_gb[i] = gb
sort_idx = np.argsort(np.array(complexities))
sort_idx_lb = np.argsort(np.array(complexities_lb))
sort_idx_gb = np.argsort(np.array(complexities_gb))
masks_sorted = masks.numpy()[sort_idx]
masks_sorted_lb = masks.numpy()[sort_idx_lb]
masks_sorted_gb = masks.numpy()[sort_idx_gb]
diff_sort_idx = np.argsort(diffs)
# plt.savefig("shape_complexity/results/diff_plot.png")
# plt.clf
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(
np.arange(len(prec_lbs)),
np.array(prec_lbs)[diff_sort_idx],
label=f"bottleneck {model_lb.bottleneck}",
)
ax1.plot(
np.arange(len(prec_gbs)),
np.array(prec_gbs)[diff_sort_idx],
label=f"bottleneck {model_gb.bottleneck}",
)
ax2.plot(
np.arange(len(diffs)),
np.sort(diffs),
color="red",
label="prec difference (H - L)",
ax1.legend(loc="lower left")
ax2.legend(loc="lower right")
ax1.set_ylabel("precision")
ax2.set_ylabel("prec difference (H-L)")
plt.savefig("shape_complexity/results/prec_plot.png")
plt.clf()
fig = plot_samples(masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs.png")
plt.close(fig)
fig = plot_samples(masks_sorted_lb, complexities_lb[sort_idx_lb])
fig.savefig("shape_complexity/results/lb.png")
plt.close(fig)
fig = plot_samples(masks_sorted_gb, complexities_gb[sort_idx_gb])
fig.savefig("shape_complexity/results/gb.png")
plt.close(fig)
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
def visualize_sort_group(data_loader, model_gb: nn.Module, model_lb: nn.Module):
recon_masks = torch.zeros((400, 3, 64, 192))
masks = torch.zeros((400, 1, 64, 64))
complexities = torch.zeros((400,))
diffs = np.zeros((400,))
prec_gbs = np.zeros((400,))
prec_lbs = np.zeros((400,))
for i, (mask, _) in enumerate(data_loader, 0):
(
complexity,
_,
_,
diff,
prec_lb,
prec_gb,
mask_recon_grid,
) = complexity_measure(model_gb, model_lb, mask, save_preliminary=True)
recon_masks[i] = mask_recon_grid
masks[i] = mask[0]
diffs[i] = diff
prec_gbs[i] = prec_gb
prec_lbs[i] = prec_lb
complexities[i] = complexity
sort_idx = np.argsort(np.array(complexities))
masks_sorted = masks.numpy()[sort_idx]
recon_masks_sorted = recon_masks.numpy()[sort_idx]
group_labels = ["lte_0", "gt_0_lte0.05", "gt_0.05"]
bin_edges = [-np.inf, 0.0, 0.05, np.inf]
bins = np.digitize(diffs, bins=bin_edges, right=True)
for i in range(bins.min(), bins.max() + 1):
bin_idx = bins == i
binned_prec_gb = prec_gbs[bin_idx]
prec_mean = binned_prec_gb.mean()
prec_idx = prec_gbs > prec_mean
binned_masks_high = recon_masks[bin_idx & prec_idx]
binned_masks_low = recon_masks[bin_idx & ~prec_idx]
save_image(
binned_masks_high,
f"shape_complexity/results/diff_{group_labels[i-1]}_high.png",
padding=10,
)
save_image(
binned_masks_low,
f"shape_complexity/results/diff_{group_labels[i-1]}_low.png",
padding=10,
)
diff_sort_idx = np.argsort(diffs)
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(
np.arange(len(prec_lbs)),
np.array(prec_lbs)[diff_sort_idx],
label=f"bottleneck {model_lb.bottleneck}",
)
ax1.plot(
np.arange(len(prec_gbs)),
np.array(prec_gbs)[diff_sort_idx],
label=f"bottleneck {model_gb.bottleneck}",
)
ax2.plot(
np.arange(len(diffs)),
np.sort(diffs),
color="red",
label="prec difference (H - L)",
)
ax1.legend(loc="lower left")
ax2.legend(loc="lower right")
ax1.set_ylabel("precision")
ax2.set_ylabel("prec difference (H-L)")
ax1.set_xlabel("image")
plt.savefig("shape_complexity/results/prec_plot.png")
plt.tight_layout(pad=2)
plt.clf()
fig = plot_samples(recon_masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs_recon.png")
plt.close(fig)
fig = plot_samples(masks_sorted, complexities[sort_idx])
fig.savefig("shape_complexity/results/abs.png")
plt.close(fig)
LR = 1e-3
EPOCHS = 20
def main():
bottlenecks = [2, 4, 8, 16]
models = {i: CONVVAE(bottleneck=i).to(device) for i in bottlenecks}
optimizers = {i: Adam(model.parameters(), lr=LR) for i, model in models.items()}
data_loader, dataset = load_data()
if LOAD_PRETRAINED:
for i, model in models.items():
model.load_state_dict(
torch.load(f"shape_complexity/trained/CONVVAE_{i}_split_data.pth")
)
else:
for epoch in range(EPOCHS):
for i, model in models.items():
train(
epoch, model=model, optimizer=optimizers[i], data_loader=data_loader
)
test(epoch, models=list(models.values()), dataset=dataset)
for bn in bottlenecks:
if not os.path.exists("shape_complexity/trained"):
os.makedirs("shape_complexity/trained")
torch.save(
models[bn].state_dict(),
f"shape_complexity/trained/CONVVAE_{bn}_split_data.pth",
)
bn_gt = 16
bn_lt = 8
# for i in range(10):
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(
# f"shape_complexity/results/this_{bn_gt}_to_{bn_lt}_sample{i}.png"
# )
# figure.clear()
# plt.close(figure)
# figure = visualize_sort(dataset, models[bn_gt], models[bn_lt])
# figure.savefig(f"shape_complexity/results/sort_{bn_gt}_to_{bn_lt}.png")
sampler = RandomSampler(dataset, replacement=True, num_samples=400)
data_loader = DataLoader(dataset, batch_size=1, sampler=sampler)
visualize_sort_group(data_loader, models[bn_gt], models[bn_lt])
# visualize_sort_fixed(data_loader, models[bn_gt], models[bn_lt])
fig, fig_recon = visualize_sort_mean(data_loader, models[bn_gt])
fig.savefig(f"shape_complexity/results/sort_mean_bn{bn_gt}.png")
fig_recon.savefig(f"shape_complexity/results/recon_sort_mean_bn{bn_gt}.png")
plt.close(fig)
plt.close(fig_recon)
fig, fig_recon = visualize_sort_diff(data_loader, models[bn_gt], models[bn_lt])
fig.savefig(f"shape_complexity/results/sort_diff_bn{bn_gt}_bn{bn_lt}.png")
fig_recon.savefig(
f"shape_complexity/results/recon_sort_diff_bn{bn_gt}_bn{bn_lt}.png"
)
if __name__ == "__main__":
main()